Math-2
 Lesson 8-3:
 Surface Area of:
 Circles, Spheres, Cylinders, Cones, Pyramids, and Prisms

Describe the idea of area.
Area attempts to answer the question "how big is it?"

area $=4\left(1\right.$ inch $\left.^{2}\right)$
1 inch area $=4$ "square inches"

The area of this square is....?

When we ask for an area, we really mean, "how many 1 inch squares will fit in the area."

1 inch

The area of this circle is....?
"how many 1 inch squares will fit in the circle."

area $=$ less than 4 inch 2

Will all those extra corners make up 1 sq. inch?

No. They make up slightly less than 1 sq. inch.
area $=$ slightly more than 3 inch 2 area $=3.1428$ inch 2
$\pi=\frac{\text { distance around the circle }}{\text { distance across the circle }}$

$$
\pi=\frac{\text { Circumference }}{2 \text { radii }}
$$

$\pi=\frac{\text { Circumference }}{\text { diameter }}$

$$
\pi=\frac{\mathrm{C}}{\mathrm{D}}
$$

$$
\mathrm{C}=\pi D
$$

$$
\pi=\frac{\mathrm{C}}{2 \mathrm{r}} \quad \mathrm{C}=2 \pi r
$$

The area of this circle is....? \quad area $=\pi r^{2}$
What is the area of the circle given by the equation?

The area of this circle is....?

$$
\mathrm{A}=\pi \mathrm{r}^{2}
$$

Is the given dimension a radius?

$$
\text { area }=\pi\left(\frac{2.7}{2}\right)^{2}=5.73 \mathrm{in}^{2}
$$

If decimal dimensions are given in the problem, it is OK to have a decimal answer.

If the problem says to use 3.14 for "pi", DO NOT use the pi button on your calculator; use 3.14.

The area of this triangle is....?

$$
\mathrm{A}_{\Delta}=\frac{1}{2} * \text { base }^{*} \text { height }
$$

Base (of a triangle): any side of the triangle.
height (of a triangle): the perpendicular distance (altitude) from any vertex of the triangle to its opposite side.

The altitude of a triangle.

$$
\mathrm{A}_{\Delta}=\frac{1}{2} * \text { base } * \text { height }
$$

Area formula: requires the use of matching altitudes and sides.

Using segment BC as the base, requires the use of segment AE as the height.

Find the triangle area. (Use the altitude from point A as its height.)

$$
\begin{array}{cc}
\mathrm{A}_{\Delta}=\frac{1}{2} * \text { base } * \text { height } & \frac{\mathrm{h}}{6.12}=\sin 41.8^{\circ} \\
h=6.12 \sin 41.8^{\circ} \\
& \mathrm{A}_{\Delta}=\frac{1}{2} *(6.32) *(6.12 \sin (41.8)) \\
\mathrm{A}_{\Delta}=12.89 \text { units }^{2}
\end{array}
$$

Find the triangle area. (Use the altitude from point B as its height.)

$\mathrm{A}_{\Delta}=\frac{1}{2} *$ base * height

$$
\frac{\mathrm{h}}{6.32}=\sin 41.8^{\circ}
$$

$$
h=6.32 \sin 41.8^{\circ}
$$

$$
\mathrm{A}_{\Delta}=\frac{1}{2} *(6.12) *(6.32 \sin (41.8))
$$

$$
\mathrm{A}_{\Delta}=12.89 \text { units }^{2}
$$

Find the triangle area. (Use the altitude from point c as its height.)

The surface area of a cylinder is....?
Net a the "flattened" version of a 3dimensional shape.

sides

Bottom

The surface area of a cylinder is....?

The surface area of a cylinder is made up of 2 circles and 1 rectangle.

$\longleftarrow 8$ inches $\rightarrow \quad \quad$ area ${ }_{\text {circle }}=\pi \mathrm{r}^{2}=\pi(4 \mathrm{in})^{2}$

$$
\text { area }_{\text {circle }}=16 \pi \mathrm{in}^{2}
$$

$\operatorname{area}_{\text {rectangle }}=l * w$
$\operatorname{area}_{\text {rectangle }}=$ height $*$ circumference of top area $_{\text {rectangle }}=h^{*}(2 \pi r)=10 i n *(2 \pi * 4 i n)=80 \pi$ in 2
Surface area ${ }_{\text {cylinder }}=16 \pi$ in $^{2}+80 \pi$ in $^{2}+16 \pi$ in 2
Surface area $\mathrm{c}_{\text {cylinder }}=112 \pi \mathrm{in}^{2}$
$\leftarrow 10$ inches $\rightarrow \quad \mathrm{area}_{\text {circle }}=\pi \mathrm{r}^{2}=\pi(5 \mathrm{in})^{2}$

$$
\text { area }_{\text {circle }}=25 \pi \mathrm{in}^{2}
$$

$\operatorname{area}_{\text {rectangle }}=l * w$
area $_{\text {rectangle }}=$ height $*$ circumference of top
area $_{\text {rectangle }}=h^{*}(2 \pi r)=20 i n *(2 \pi * 5 i n)=200 \pi$ in 2
Surface area ${ }_{\text {cylinder }}=25 \pi \mathrm{in}^{2}+200 \pi \mathrm{in}^{2}+25 \pi \mathrm{in}^{2}$
Surface area ${ }_{\text {cylinder }}=250 \pi \mathrm{in}^{2}$

Prism: a three-dimensional shape (a "solid") that has two parallel polygonal bases and planer ("flat") sides.

Prisms are named based upon the shape of their bases.

If the sides intersect the base at a right angle, we include that in the name:

What is the name of the prism to the left?
"Right Triangular Prism"

What is the "surface area" of the prism?

Net a the "flattened" version of a 3dimensional shape.

You can think of the "lateral sides" as 3 surfaces OR
you can think of it as the rectangular portion of the net.

What is the "surface area" of the prism?

What is the "surface area" of the prism?

What is the area of a triangle?

$\begin{aligned} 11 \text { inches } & \text { area }_{\text {triangle }}=\frac{1}{2}(\text { base } * \text { height }) \\ & \text { area }_{\text {triangle }}=\frac{1}{2}(8 \text { in } * \sqrt{6} \text { in })\end{aligned}$
$\operatorname{area}_{\text {triangle }}=4 \sqrt{6}$ in $^{2}=9.8$ in 2
area $_{\text {side }}=1^{*} w$
$\leftarrow 8$ inches $* \quad \operatorname{area}_{\text {sides }}=(8$ in $* 11$ in $)+(\sqrt{6}$ in $* 1$ in $)+($ hyp $* 11$ in $)$

$$
\text { area }_{\text {sides }}=88 \text { in }^{2}+11 \sqrt{6} \text { in }^{2}+(\sqrt{72} \text { in } * 11 \text { in })
$$

$$
\begin{gathered}
\text { area }_{\text {sides }}=88 i n^{2}+26.9 i n^{2}+93.3 i n^{2}=208.2 i n^{2} \\
\text { area }_{\text {prism }}=2 *\left(9.8 \mathrm{in}^{2}\right)+208.2 i n^{2}=227.8 i n^{2}
\end{gathered}
$$

The surface area of a pyramid is....?

The sum of the area of the faces.
Rectangular Pyramid has a 4-sided base: it has four triangular faces.

The "slant height" of the pyramid is the "height" of the triangular face.

The surface area of a rectangular pyramid is 1 rectangle and 4 triangles.

The surface area of a sphere is....?
surfarea $_{\text {sphere }}=4 \pi \mathrm{r}^{2}$
surface $^{\text {area }}{ }_{\text {sphere }}=4 \pi\left(\frac{6}{2}\right)^{2}$
surface area ${ }_{\text {sphere }}=4 \pi(3)^{2}$
surface area $_{\text {sphere }}=4 \pi * 9$

Cone

Surface
Area

We will need to calculate the surface area of the cone and the base.

Area of the cone is $\pi r s$
Area of the base is πr^{2}
Therefore the Formula is:

Cone

Surface Area

We will need to calculate the surface area of the cone and the base.
Area of the cone is $\pi \mathrm{rs}$ Area of the base is πr^{2}
Therefore the Formula is:

$$
\operatorname{slant}_{\text {height }}=\sqrt{8^{2}+11^{2}}
$$

$$
\begin{aligned}
& \text { slant }_{\text {height }}=? \\
& a^{2}+b^{2}=c^{2}
\end{aligned}
$$

$$
=\sqrt{185 \text { in }^{2}}
$$

$$
=13.6 \text { in }
$$

$$
\begin{aligned}
& \operatorname{area}_{\text {cone }}= \\
& \pi * 8 \text { in } * 13.6 \text { in }+\pi *(8 \mathrm{in})^{2} \\
& =108.8 \pi \mathrm{in}^{2}+64 \pi \mathrm{in}^{2} \\
& =172.8 \pi \mathrm{in}^{2} \\
& =542.9 \mathrm{in}^{2}
\end{aligned}
$$

