

Which shapes would you group together?

Math-2a

Lesson 9-1
Triangle Similarity

Vocabulary

Proportion: An equation where a fraction equals a fraction.

$$
\frac{3}{6}=\frac{1}{2}
$$

Proportional: to be related by a constant ratio. We say sides are proportional if the ratios of corresponding sides equals the same number.

$$
\frac{A E}{A C}=\frac{A D}{A B}=\frac{D E}{B C}=\frac{10}{5}=2
$$

Ratio: a fraction Compare BC to AC with a ratio.

Proportional: to be related by a constant ratio. We say lengths are proportional if the ratios of corresponding lengths equals the same number.

Proportional: to be related by a constant ratio. We say sides are proportional if the ratios of corresponding sides equals the same number.

$$
\frac{A E}{A C}=\frac{A D}{A B}=\frac{D E}{B C}=\frac{10}{5}=2
$$

The side lengths of $\triangle A D E$ are twice as long as the side lengths in $\triangle A B C$

Scale Factor: the number that is multiplied by the length of each side of one triangle to equal the lengths of the sides of the other similar triangle.

Vocabulary

Scale Factor ${ }_{\triangle A B C \rightarrow \triangle X Y}=\frac{Z X}{C A}=\frac{10}{5}=2$

Review: Triangle Congruence

All 3 pairs of corresponding angles and all 3 pairs of corresponding sides are congruent (CPCTC)

We can prove Triangle Congruence using congruence of only three pairs of corresponding parts.

Side-Side-Side (SSS)

Side-Angle-Side (SAS)

Triangle Similarity: IF all corresponding angles are congruent and
all corresponding sides are proportional THEN the triangles are similar.

$$
\begin{aligned}
& \begin{array}{ll}
\angle A \cong \angle G & \frac{A B}{G E}=\frac{15}{10}=\frac{3}{2} \quad \frac{B C}{E F}=\frac{7.5}{5}=\frac{3}{2}
\end{array} \\
& \angle B \cong \angle E \\
& \angle C \cong \angle F \\
& \mathrm{GE}=10 \\
& \frac{A C}{G F}=\frac{12.99}{8.66}=\frac{3}{2} \\
& \triangle A B C \sim \triangle G E F \\
& \text { Similarity } \\
& \text { statement. } \\
& \mathrm{G}^{3 .} \mathrm{GF}=8.66
\end{aligned}
$$

Side-Side-Side (SSS) Triangle Similarity: IF all three pairs of corresponding sides are proportional THEN the triangles are similar.

$$
\frac{A B}{G E}=\frac{B C}{E F}=\frac{A C}{G F}=\frac{5}{10}=\frac{1}{2}
$$

Triangle Similarity: But we don't need all corresponding angles are congruent and all corresponding sides are proportional.

We can get by with the following patterns: $\mathrm{AA}, \mathrm{SSS}$, and SAS
Angle-Angle (AA) Triangle Similarity: IF two pairs of corresponding angles are congruent THEN the triangles are similar.

Why don't we need AAA?

Examples of SSS Triangle similarity

$$
\frac{\text { side }_{T r i-1}}{\text { side }_{T r i-2}}=\frac{10}{5}=\frac{20}{10} \neq \frac{13}{6}
$$

NOT similar

If the triangles to the right are similar, what must be the value of ' x '?

Side-Angle-Side (SAS) Triangle Similarity: IF two pairs of corresponding sides are proportional and the included angles are congruent THEN the triangles are similar.

Scale Factor: the number that is multiplied by the length of each side of one triangle to equal the lengths of the sides of the other similar triangle.
$A B($ scale factor $)=G E$
scale factor ${ }_{\triangle A B C \rightarrow \triangle G E F}=\frac{G E}{A B}=\frac{10}{15}=\frac{2}{3}$

If the triangles are similar:
a) Show that the triangles are similar using ratios (if applicable)
b) give the similarity theorem
c) write the similarity statement.
d) write the scale factor (small Δ to large Δ)
$\frac{V T}{Q T}=\frac{28}{14}=2 \quad \frac{T U}{T R}=\frac{16}{8}=2 \quad \frac{V U}{Q R}=\frac{20}{10}=2$

SSS Triangle Similarity

$$
\Delta T U V \sim \Delta T R Q
$$

scale factor ${ }_{\Delta T R Q \rightarrow \Delta T U V}=2$

Name the two triangles. $\quad \triangle F G H$ and $\triangle F R Q$

Name the angle pair congruencies:

List the missing side lengths:

$R F=\underline{104-64=40}$

$$
H F=\underline{30+48=78}
$$

If the triangles are similar:
similar:
a) Show that the triangles are similar using ratios (if applicable)
b) give the similarity theorem
c) write the similarity statement.
d) write the scale factor (small Δ to large Δ)
$\frac{F G}{F R}=\frac{104}{40}=2.60 \quad \frac{F H}{F Q}=\frac{78}{30}=2.60$
$\angle F \cong \angle F$
SAS Triangle Similarity
$\Delta F G H \sim \Delta F R Q$

scale factor ${ }_{\Delta F R Q \rightarrow \Delta F G H}=2.6$

If the triangles are similar:
a) Show that the triangles are similar using ratios (if applicable)
b) give the similarity theorem
c) write the similarity statement
d) write the scale factor (small Δ to large Δ)

$$
\begin{aligned}
& \frac{F G}{F M}=\frac{33}{20}=1.65 \\
& \frac{F H}{F N}=\frac{39}{25}=1.56 \quad \text { NOT Similar }
\end{aligned}
$$

If the triangles are similar:
a) Show that the triangles are similar using ratios (if applicable)
a) Show that the triangles are
b) give the similarity theorem
c) write the similarity statemen
c) write the similarity statement
d) write the scale factor (small Δ to large Δ)
$\angle H T U \cong \angle H G F$ (corresponding angles)
$\angle H \cong \angle H$
AA Triangle Similarity
$\Delta H G F \sim \triangle H T U$
scale factor $=$??

