Math-2
Lesson 7-4
Properties of
Parallelograms
And
Isosceles Triangles

What sequence of angles would you "link" to prove
$m \angle 4=m \angle 9$

Alternate Interior
Corresponding

What sequence of angles would you "link" to prove: $m \angle 4+m \angle 6=180$

Corresponding

Linear Pair

The two red lines are parallel, what can you say about ...

Linear Angle Pairs: supplementary
Vertical angle pair: congruent
Alternate Interior Angles: congruent

Consecutive Interior Angles supplementary Corresponding Angles: congruent

Alternate Exterior Angles: congruent

Parallelogram Properties :

1. Opposite Angles are congruent.

$$
\begin{aligned}
& m \angle A=m \angle C \\
& m \angle B=m \angle D
\end{aligned}
$$

2. Consecutive Interior Angles are supplementary.

$$
m \angle A+m \angle B=180
$$

Math Problems from "Opposite Angles of Parallelograms are Congruent"

$m \angle A=$?

$$
\begin{aligned}
& \mathrm{m} \angle A=2 x+10 \\
& \mathrm{~m} \angle A=2(30)+10 \\
& \mathrm{~m} \angle A=70
\end{aligned}
$$

Math Problems from "Adjacent Angles of Parallelograms are Supplementary"

Math Problems from "Adjacent Angles of Parallelograms are Supplementary"

Segment AC is a diagonal.

$$
x=?
$$

$m \angle B C A+m \angle D C A=m \angle B C D$
Angle Addition Postulate $m \angle A D C+m \angle B C D=180$
Adjacent Angles of Parallelograms

$$
\begin{gathered}
3 \mathrm{x}-1+2 x+6+150=180 \\
5 \mathrm{x}+155=180 \quad \mathrm{x}=5
\end{gathered}
$$

$\angle B C A \cong \angle D A C \quad$ Alternate Interior Angles

$$
\begin{array}{cl}
m \angle C A D+m \angle D C A+m \angle D=180 & \begin{array}{l}
\text { Triangle Angle Sum Theorem (we'll } \\
\text { prove this later). } \\
3 \mathrm{x}-1+2 x+6+150=180
\end{array} \\
5 \mathrm{x}+155=180 & \mathrm{x}=5
\end{array}
$$

If we could prove the diagonal forms two congruent triangles, we could use CPCTC to prove more properties of Parallelograms.

$$
m \angle A=m \angle C
$$

Opposite Angles are congruent.

$$
\angle 1 \cong \angle 2
$$

Alternate Interior Angles

$$
B D=D B
$$

Same segment \rightarrow same length

$$
\begin{array}{ll}
A D=B C & \text { СРСТС } \\
A B=C D & \text { СРСТС }
\end{array}
$$

$\triangle A B C \cong \triangle C D B$
AAS Theorem

Math Problems from "Opposite Sides of Parallelograms are congruent"

Can we prove that diagonals form two pairs of congruent triangles?

Opposite Sides are congruent.

$$
\angle A M D \cong \angle C M B
$$

Vertical Angles
$\angle 3 \cong \angle 4$
Alternate Interior Angles

$\triangle A M D \cong \triangle C M B$

AAS Theorem

Using the other pairs of:

1) Opposite sides
2) Vertical angles
3) Alternate Interior Angles
$\triangle C M D \cong \triangle A M B$
AAS Theorem

By CPCTC

$$
\begin{aligned}
\overline{D M} & \cong \overline{M B} \\
\overline{A M} & \cong \overline{C M}
\end{aligned}
$$

Therefore, diagonals of parallelograms bisect each other.

Math Problems from "Diagonals of Parallelograms BISECT each other."

$$
\begin{aligned}
A C & =26 \\
A M & =3 x-5 \\
x & =?
\end{aligned}
$$

1. Draw a picture of the diagonal and label the known measurements.
2. Write an equation that relates the lengths in the problem.

$$
\begin{array}{r}
2 * A M=A C \\
2(3 x-5)=26
\end{array}
$$

3. Solve for ' x '. $3 x-5=13$
$3 x=18$
$x=6$

Parallelogram Properties :

1. Opposite Angles are congruent. $m \angle 3=m \angle 4$
2. Consecutive Interior Angles are supplementary. $m \angle 1+m \angle 2+m \angle 3=180$

3. A diagonal of a parallelogram forms two congruent triangles. $\quad \triangle D A B \cong \triangle C B D$
4. Opposite Sides of parallelograms are congruent. $A B=C D$
5. Opposite triangles formed by the diagonals (plural) form congruent triangles.

$$
\triangle A M D \cong \triangle C M B
$$

6. Diagonals of parallelograms bisect each other.

$$
A M=M C \quad A C=2 * M C
$$

Segment Bisector: if a line segment is intersected by a ray, segment or line at the midpoint of the segment, then the ray, segment line is a segment bisector.
a) Another segment
b) A ray
c) A line.

$\overline{E F}$ is a perpendicular bisector of $\overline{A B}$.
Are there any equations (that come from congruencies) that we can write from this result?

$$
\mathrm{m} \angle A K E=m \angle B K E=90
$$

perpendicular bisector
$A K=B K$
perpendicular bisector
$A B=2 * A K$
segment addition

Math Problems from "Perpendicular Bisectors"

$$
\begin{aligned}
A C & =26 \\
A M & =3 x-5 \\
x & =?
\end{aligned}
$$

1. Draw a picture of the segment and label the known measurements.
2. Write an equation that relates the lengths in the problem. $2 * A M=A C$

$$
2(3 x-5)=26
$$

3. Solve for ' x '. $3 x-5=13$
$3 x=18$
$x=6$

Angle Bisector: a common side of two adjacent angles that divides the angle into two angles of equal measure.

If $\mathrm{m} \angle 1=m \angle 2$

THEN $\overline{B C}$ is an angle bisector of. $\angle A B D$

Are there any equations that we can write from this result?

$$
\mathrm{m} \angle A B C=m \angle D B C
$$

angle bisector
$\mathrm{m} \angle A B D=2 * m \angle D B C$
angle bisector

Math Problems from "Angle Bisectors"

Isosceles Triangle: A triangle with two congruent sides.
Legs: (Of an Isosceles Triangle) The two congruent sides.
Vertex Angle: (Of an Isosceles Triangle) The included angle of the legs.

Base: (Of an Isosceles Triangle) The opposite the vertex angle.

Base Angles: (Of an Isosceles Triangle) The angles that include the base.

Given: $\triangle A B C$ is an Isosceles Triangle and $\overline{A M}$ is an angle bisector of vertex angle A.

What other congruencies result from this statement?
$\angle C A M \cong \angle B A M \quad(\overline{A M}$ bisects $\angle A)$
$A C=A B \quad$ (Isosceles Triangle)
$A M=A M$ (congruent to itself)
$\Delta C A M \cong \triangle B A M \quad$ (SAS)

$\Delta C A M \cong \triangle B A M$

Congruent triangles give us SIX Pairs of congruencies.

$C M=B M$

$m \angle C M A=m \angle B M A$
$m \angle A C M=m \angle A B M$

Properties of Isosceles Triangles

1. The vertex and bisector forms two congruent triangles.
$\Delta C A M \cong \triangle B A M$
2. The vertex angle bisector is a perpendicular bisector of the base.

$$
\begin{gathered}
m \angle C M A=m \angle B M A=90 \\
C M=B M
\end{gathered}
$$

3. Base Angles are congruent.

$$
m \angle A C M=m \angle A B M
$$

Triangle Sum Theorem: If $\angle A, \angle B$, and $\angle C$ are the interior angles of a triangle, then their measures add up to 180°.

Math Problems from "The Triangle Sum Theorem."

1. Write an equation that relates the measures of the angles.

$$
m \angle A+m \angle B+m \angle C=180^{\circ}
$$

2. Substitute the measures of the angles into the equation.

$$
2 x-1+3 x+7+4 x+3=180^{\circ}
$$

3. Solve for ' x '.

$$
\begin{aligned}
& 9 x+9=180^{\circ} \\
& 9 x=171^{\circ} \\
& x=19
\end{aligned}
$$

$$
\mathrm{m} \angle B=4 x+3
$$

$$
\mathrm{m} \angle B=4(19)+3
$$

$$
\mathrm{m} \angle B=79^{\circ}
$$

$$
\mathrm{m} \angle B=?
$$

A
$2 x-1$
$4 x+3$

Constructing a Perpendicular Bisector
Given a line segment $A B$

1) Using a compass draw two arcs of equal radius using the endpoints as the center of each are.
2) Construct a point where the two arcs intersect.
3) Construct a line through these two points.
4) $\overline{E F}$ Is the perpendicular bisector of $\overline{A B}$

Constructing an Angle Bisector

Given $\angle B$

1) Using a compass draw an arc using point B as the center.
2) Construct two points (points A and C) where the arc intersects the side of the angles
3) Construct $\overline{A C}$
4) Construct a
perpendicular bisector of $\overline{A C}$

5) $\overline{B M}$ is the angle bisector of $\angle A B C$
