Math-2
Lesson 7-3
Special Angle Pairs

Supplementary Angles are any two angles whose measures add up to 180 .

Complementary Angles are any two angles whose measures add up to 90 .

Adjacent Angles have a common side and share a common vertex

Angle Addition Postulate
If $\angle A B C$ is adjacent to $\angle \mathrm{CBD}$ then $\mathrm{m} \angle A B C+\mathrm{m} \angle \mathrm{CBD}=\mathrm{m} \angle A B D$ or
If $\angle 1$ is adjacent to $\angle 2$ then $\mathrm{m} \angle 1+\mathrm{m} \angle 2=\mathrm{m} \angle A B D$

Vertical Angle Pair: angles formed by two crossing lines and have no common sides.
$\angle 2$ and $\angle 4$ are a vertical angle pair

$\angle 1$ and $\angle 3$ are a
vertical angle pair

Are there any other vertical angle pairs?

Linear Pair of angles is made up of two "adjacent angles" whose un-shared sides form a straight angle.

In the crossed-lines figure above, name 4 linear pairs of angles.

A Two-Column Proof is a logical argument written so that the 1st column contains a statement and the 2nd column provides a justification for the truthfulness of the statement.

Statement	Justification (reason)

A drawing is NOT a proof!!!

Prove the Linear Pair Theorem: (If two angles form a linear pair, then the sum of their measures is 180 degrees.)

Statement	Justification (reason)
1	$\angle 1$ and $\angle 2$ are a linear pair
2	$\angle 1$ and $\angle 2$ are adjacent angles
3	$\angle \mathrm{ABD}$ is a straight angle
4	$m \angle \mathrm{ABD}=185$
5	$m \angle 1+\angle 2=\mathrm{m} \angle \mathrm{ABD}=180$
6	Definition of a linear pair
The sum linear pairs is 180 degrees	Definition of a linear pair

Linear Pair of angles is made up of two "adjacent angles" whose un-shared sides form a straight angle.

Use the Linear Pair Theorem to prove that vertical angles are congruent.

Statement	Justification (reason)
$m \angle 1+\mathrm{m} \angle 2=180$	Linear Pair Theorem
$m \angle _2+\mathrm{m} \angle 3=180$	Linear Pair Theorem
$m \angle 1+\mathrm{m} \angle 2=\mathrm{m} \angle 2+m \angle 3$	substitution (steps 1 and 2)
$m \angle \mathbf{1}=m \angle 3$	Property of _equality
$\angle 1$ and $\angle 3$ are vertical angles.	Def'n of vertical angles
Vertical angles are congruent.	QED

Linear Pair Theorem: If two angles form a linear pair, then the sum of their measures is 180 degrees.)

Vertical Angle Theorem: If two angles are vertical angles then the two angles are congruent.

Transversal line: A line that intersects two other lines (usually parallel lines).

Corresponding Angles: pairs of angles that are in the same relative position at the two intersections.

$\angle 1, \angle 5$

Name the three other corresponding angle pairs.
$\angle 2, \angle 6$
$\angle 3, \angle 7$
$\angle 4, \angle 8$

Alternate Interior Angles: pairs of angles that are in between the parallel lines and on alternate sides of the transversal.

Alternate Exterior Angles: pairs of angles that are outside the parallel lines and on alternate sides of the transversal.

$\angle 1, \angle 7$

Name the one other alternate exterior angle pair.
$\angle 2, \angle 8$

Consecutive Interior Angles: pairs of angles that are in between the parallel lines and are on same side of the transversal.
$\angle 3, \angle 6$

Name the one other consecutive interior angle pair.
$\angle 4, \angle 5$

Corresponding Angles Postulate: If two parallel lines are cut by a transversal, then Corresponding angles are congruent.

$$
\begin{aligned}
& m \angle 1=m \angle 5 \\
& m \angle 2=m \angle 6 \\
& m \angle 3=m \angle 7 \\
& m \angle 4=m \angle 8
\end{aligned}
$$

The two red lines are parallel. Find the measures of all the other angles and give the theorem that justifies your answer.

The two red lines are parallel, what can you say about ...

Linear Angle Pairs: supplementary
Vertical angle pair: congruent
Alternate Interior Angles: congruent

Consecutive Interior Angles supplementary
Corresponding Angles: congruent
Alternate Exterior Angles: congruent

One pair of parallel lines

Two pairs of parallel lines

What sequence of angles would you "link" to prove $\quad m \angle 1=m \angle 11$

Alternate Exterior
 Alternate Interior

Vertical

What sequence of angles would you "link" to prove $m \angle 1=m \angle 11$

Corresponding

Corresponding
Vertical

What sequence of angles would you "link" to prove $\quad m \angle 4=m \angle 9$

Alternate Interior
Corresponding

What sequence of angles would you "link" to prove $m \angle 4+m \angle 10=180$

Consecutive Interior
 Corresponding

Substitution

