Math-2
 Lesson 7-1

Geometry Review, and Midpoint Formula and
 Distance Formula

What is:? Geometry

Describe...

What are the symbols for

Point --------------P Point
Line -------------- Line:

Line Segment $-----\rightarrow$ Line Segment

Length of a
Length of a line segment line segment

Ray -------------- Ray

Angle -------------- Angle

What is a...?

Right Angle
Acute Angle
Obtuse Angle
Straight Angle
Theta " Θ "
Number line
x-y Plane

Colinear points
midpoint

Match the symbol with its description

(1) Can $\angle 3$ be named $\angle B$? If not, why can't it be? No because we don't know which angle it is if we just say $\angle B$.
(2) Represent $\angle 3$ two other ways. $\angle A B C$
$\angle C B A$

How are the lengths of segments measured?

With a ruler.

How are angles measured? With a protractor

1. Put the hole of the protractor at the vertex of the angle.
2. Line up one side of the angle so that it goes through " 0 " on the edge of the protractor.

3. Read off the measure of the angle on the inside scale (for acute angles) or the outside of the scale (for obtuse angles).

$$
m \angle A B C=50^{\circ}
$$

We can find the midpoint between any two numbers on a number line by averaging them. $\frac{a+b}{2}$
How do you convert an intercept form quadratic equation into a vertex form quadratic equation?

$$
\frac{(-4)+(2)}{2}=\frac{-2}{2}=-1
$$

For the parabola, what special point has an x-coordinate that is the midpoint between the two x-intercepts?
vertex

We can find the midpoint of a segment that is on the (x, y) plane using the following formula:

The midpoint x-coordinate is the average of the x-coordinates of the two end points.

The midpoint y-coordinate is the average of the y-coordinates of the two endpoints.

Does the order of x_{1} and x_{2} matter?
Why not? Commutative property of addition.

Midpoint of $\overline{\mathrm{AC}}=$?

$$
\begin{aligned}
& \text { Point } \mathrm{A}:\left(x_{1}, y_{1}\right)=(-2,1) \\
& \text { Point } \mathrm{C}:\left(x_{2}, y_{2}\right)=(4,1) \\
& \left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
& \left(\frac{-2+4}{2}\left(\frac{1+1}{2}\right)\right. \\
& (1,1)
\end{aligned}
$$

Midpoint $_{\overline{\mathrm{AC}}}:(1,1)$ a horizontal line.

Is it necessary to use the midpoint formula to calculate the x-value of a midpoint on a vertical line?

Why not?

x-values are all the same on a vertical line.

Midpoint of $\overline{\mathrm{BC}}=$?
Point B: $\left(x_{1}, y_{1}\right)=(4,3)$
Point $\mathrm{C}:\left(x_{2}, y_{2}\right)=(4,1)$

$$
\begin{gathered}
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
\left(\frac{4+4}{2}, \frac{3+1}{2}\right) \\
(4,2)
\end{gathered}
$$

Midpoint $_{\overline{\mathrm{B}} \overline{\mathrm{C}}}:(4,2)$

Is it necessary to use the midpoint formula to calculate the x-value and y-value of a midpoint on a line that is neither horizontal or vertcal?
Why?
Every $x-y$ pair is unique on this type of line.

Midpoint of $\overline{\mathrm{AB}}=$?

$$
\begin{aligned}
& \text { Point A : }\left(x_{1}, y_{1}\right)=(-2,1) \\
& \text { Point B }:\left(x_{2}, y_{2}\right)=(4,3) \\
& \left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
& \left(\frac{-2+\left(4, \frac{1+3}{2}\right)}{2}\right)
\end{aligned}
$$

Midpoint $_{\overline{\mathrm{AB}}}:(1,2)$

Midpoint of $\overline{\mathrm{AB}}$ is $(-1,-2) \quad$ Point A is $(3,1)$. What is Point B ?

Find the midpoint between $(2,5)$ and $(-4,15) \quad \rightarrow(-1,10)$
$\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \rightarrow\left(\frac{-4+2}{2}, \frac{15+5}{2}\right) \rightarrow\left(\frac{-2}{2}, \frac{20}{2}\right)$
Find the midpoint between $(-3,-6)$ and $(6,-11) \rightarrow(-1,10)$
$\rightarrow\left(\frac{-3+6}{2}, \frac{-6+(-11)}{2}\right) \rightarrow\left(\frac{3}{2}, \frac{-17}{2}\right)$
Find the midpoint of segment $A B$ is $(4,-2)$ and one endpoint is $(11,-5)$. What is the other endpoint?

$$
\begin{aligned}
& \left(\frac{x_{1}+11}{2}, \frac{y_{1}-5}{2}\right)=(4,-2) \\
& \frac{x_{1}+11}{2}=4 \quad x_{1}=-3 \quad \frac{y_{1}-5}{2}=-2 \quad y_{1}=1
\end{aligned}
$$

