Math-2
 Lesson 6-3

Solving Systems of Equations by Graphing and Substitution

Kathryn takes her Sadie Hawkins date to Baskin Robbins. They pig out and they each have a sundae and a milkshake. It costs her $\$ 9$.

$$
T C=C O S T_{\text {milkshake }}+C O S T_{\text {sundae }} \quad 9=2 m+2 s
$$

Sarah follows Kathryn's lead and takes her Sadie date to Baskin Robbins. Not to be outdone by Kathryn, Sarah and her date really pig out and each has a sundae and 2 milkshakes. It costs her \$13.

$$
13=4 m+2 s
$$

How much does Baskin Robbins charge for their sundaes? What do they charge for their shakes?

What values of " m " and " s " make both statements true?

System of two linear equations: Two equations (of lines) that each have the same two variables. (in this case ' x ' and ' y ')

$$
\begin{array}{ll}
3 x+y=7 & A x+B y=C \quad(\text { equation 1) } \\
5 x-2 y=-3 & D x+E y=F \quad(\text { equation } 2)
\end{array}
$$

Solution to an Equation: all $x-y$ pairs that make the equation a true statement (any point on the graph of the line).

A solution of a system of two equations in two variables is an ordered pair of real numbers that is a solution of both equations.

Categories of Solutions:

Ways 2 lines can be graphed:

Cross \rightarrow one solution

Parallel \rightarrow no solutions

Same line \rightarrow infinitely many solutions

How do you know how many solutions there are? (1, 0, or infinite \#)

$y=3 x+1$
$y=2 x+1$
$y=-2 x+3$
$y=-2 x-4$
$2 x+2 y=2 \quad 1^{\text {st }}$ equation is a multiple of the $2^{\text {nd }}$ equation
$x+y=1$
Not same line, not parallel \rightarrow one solution. parallel \rightarrow no solutions \rightarrow same line
\rightarrow infinite \# of solutions.

Which
Category ?

$$
\begin{aligned}
& y=2 x+6 \\
& y=4 x-2
\end{aligned}
$$

Cross \rightarrow one solution

Parallel \rightarrow no solutions

Same line \rightarrow infinitely many solutions

Which
Category ?

$$
y=2 x+4
$$

$$
y=2 x-7
$$

Cross \rightarrow one solution

Parallel \rightarrow no solutions

Same line \rightarrow infinitely many solutions

Which
Category ?

$$
2 x+3 y=6
$$

$$
4 x+6 y=12
$$

Cross \rightarrow one solution

Parallel \rightarrow no solutions

Same line \rightarrow infinitely many solutions

Methods of Solving Systems

1. Graphing: The points of intersection are the solutions.

2. Substitution:
3. Elimination: we'll do this later.

Solving by graphing:

Is very easy if you use a graphing calculator.
$y=x+3$
$y=3 x-1$

Is doable if you use graph paper BUT you must be VERY accurate to get the correct solution.

Original Word Problem:

What values of " m " and " s " make both statements true?

$$
\begin{aligned}
& 9=2 m+2 s \\
& 13=4 m+2 s
\end{aligned}
$$

$$
m=-s+4.5
$$

$$
m=-0.5 s+3.25
$$

Milkshakes: $\$ 2.00$

Sundae: \$2.50

$$
\begin{aligned}
& 6 x+2 y=3 \xrightarrow{\xrightarrow{\text { Solve by graphing }}} \\
& y=-3 x+1 \\
& 6 x+2 y=3 \longrightarrow y=-3 x+3 / 2 \\
& y=-3 x+1 \quad \text { The lines were parallel. } \\
& \begin{aligned}
x-3 y & =5 \\
-x+5 y & =3
\end{aligned} \text { Solution: }(17,4) \\
& y=2 x+6 \quad \text { Solution: }(-2 / 3,13 / 3) \\
& y=5 x+8 \\
& 2 x-y=2 \\
& 4 x+2 y=8
\end{aligned}
$$

Substitution Method

1. Solve one equation for one of the variables (already done if in " $y=$ " form).
2. Substitute the value of the variable into

$$
y=-2 x+8
$$

$$
y=3 x-2
$$

the other equation.
3. Solve for the single variable.
4. Substitute the value of the solved-for variable into either equation to find the other varable.

$$
\begin{array}{rl}
5 x-2=8 & 5 x=10 \\
+2+2 & \div 5 \div 5 \\
& x=2
\end{array}
$$

5. Test your solution

$$
y=3 x-2
$$

$$
\begin{aligned}
& y=3(2)- \\
& y=6-2
\end{aligned}
$$

$$
y=4
$$

$(2,4)$ in the other equation.

$$
y=3()-2 \quad y=6-2 \quad y=-2 x+8 \quad(4)=-2(2)+8
$$

Solve the System of Equations Using the Substitution Method

$$
\begin{aligned}
& y=-3 \\
& y=-6 x+21
\end{aligned}
$$

$(4,-3)$

$$
y=-8 x+22
$$

$$
y=4 x-2
$$

$(2,6)$

$$
\begin{align*}
& y=6 x-3 \tag{0,-3}\\
& y=-4 x-3
\end{align*}
$$

Equations in Standard Form

1. Solve both equations for the same variable.

$$
y=-2 x+8 \quad y=x-1
$$

2. Substitute the value of the variable into the other equation.
3. Solve for the single variable.
4. Substitute the value of the solved-for variable into either equation.

$$
\begin{array}{ll}
2 x+y=8 & 6+y=8 \\
2(3)+y=8 & y=2
\end{array}
$$

5. Test your solution $(2,4)$ in

$$
\begin{aligned}
-2 x+8 & =x-1 \\
+2 x & +2 x \\
8 & =3 x-1 \\
+1 & +1 \\
9 & =3 x \quad x=3 \\
\div 3 & \div 3 \quad 3
\end{aligned}
$$

$2 x+y=8$
$-3 x+3 y=-3$ the other equation.

$$
\begin{gathered}
-3(3)+3(2)=-3 \\
-9+6=-3
\end{gathered}
$$

How do you know how many solutions there are? (1,0 , or infinite \#)

$$
\begin{array}{lcl}
6 x+2 y=3 & 6 x+2(-3 x+1)=3 & 2=3 \\
y=-3 x+1 & 6 x-6 x+2=3 &
\end{array}
$$

All the variables "disappeared" and the equation is false:
$\longrightarrow \quad$ No solutions
How can that be?
$6 x+2 y=3$
$y=-3 x+1$
$\longrightarrow y=-3 x+3 / 2$
The lines were parallel.

How do you know how many solutions there are? (1, 0, or infinite \#)

$$
\begin{array}{lcc}
6 x+2 y=4 & 6 x+2(-3 x+2)=4 & 4=4 \\
y=-3 x+2 & 6 x-6 x+4=4 &
\end{array}
$$

All the variables "disappeared" and the equation is true:
\longrightarrow Infinitely many solutions
How can that be?
$6 x+2 y=4 \longrightarrow y=-3 x+2$
$y=-3 x+2 \quad$ Different versions of the same equation!

