Math-2 Lesson 6-2

Two Variable Inequalities and

Systems of Inequalities

Solve $0>x^{2}-x-12$

The boundary \#'s separate the solution from the non-solution.

$$
0=x^{2}-x-12
$$

$$
0=(x-4)(x+3)
$$

$$
x=4,
$$

$$
-3
$$

Test one value of ' x ' to see if it is a solution. Try $x=0$.

$$
\begin{array}{ccc}
0>(0)^{2}-(0)-12 & 0>-12 & \begin{array}{c}
\rightarrow \text { A True statement. } \\
-3<x<4
\end{array} \\
\hline-4 & 4>-3 \text { and }<4 \\
-4 & \rightarrow-3,4)
\end{array}
$$

Graph the solution to the compound inequality:

How would you define (in words) what a solution to a single variable compound inequality means?

The values of 'x' that make the inequality true.

What is the solution to a two-variable equation?

$$
y=x+3
$$

The x - y pairs that make the equation true.
When graphed, the solution to the equation is ALL of the points on the graph.

What is the solution to a twovariable inequality

$$
y \geq x+3
$$

All $x-y$ pairs that make the inequality true.
When graphed, the solution to the equation is ALL of the points on the graph.

$$
y \geq x+3
$$

Is $(0,0)$ a solution?
$0 \geq 0+3$
Fill in the table:

x	y	solution $?$
0	0	no
0	1	
0	2	
0	3	
0	4	

$y \geq x+3$
Fill in the table:

x	y	solution $?$
-1	0	
-1	1	
-1	2	
-2	0	
-2	1	
-2	2	
-3	0	
-3	1	

Can you tell what the graph will look like?

Single Variable Inequality: The "boundary numbers" separate the solution from the non-solution.

The shaded part of the graph is the solution.

$$
y \geq x+3
$$

The line: $y=x+3$
Is the boundary between the solution and non-solution.

The line divides the x - y plane into two halves.

The solution to the inequality is all of the x-y pairs in one of the "half planes".

$$
y>x+3
$$

Now it is just ">" (not " \geq ")
Test a point on the line: $(0,3)$

$$
3>0+3
$$

Do the points on the line make the inequality true?

no

How do we show that on the graph?

Don't shade the line (draw a dotted line).

$$
y>x+3
$$

Now it is just ">" (not " \geq ") Test a point on the line: $(0,3)$

$$
3>0+3
$$

Do the points on the line make the inequality true?

no

How do we show that on the graph?

Don't shade the line (draw a dotted line).

Let's write a procedure on how to graph 2-variable inequalities.

$$
y>-2 x+3
$$

1. Graph the line.

$$
y=-2 x+3
$$

2. If the inequality is ">" (not " \geq "), the line will be dotted (not shaded).
3. If it is " \geq " the line will be solid (shaded).

$$
y>-2 x+3
$$

4. Pick a point and see if it is the solution. If so, shade that side of the line, (otherwise shade the other side).
$(0,0)$
$0>-2(0)+3$
no

Graph the following inequality.

$$
2 x-3 y>6
$$

Why does ">" end up being shaded below the line?

Non-linear 2 Variable inequality

$$
y>x^{2}-2
$$

Is the parabola solid or dotted?
Is the solution the region above or below the parabola?

