Math-2

Lesson 4-1
Relations and Functions
And the Absolute Value Function

Relation: A "mapping" or pairing of input values to output values.

Function: A relation where
each input has exactly one output.

Describe how a relation is

1) Similar to a function.

Both have inputs matched to outputs.

1) Different from a function?

One input to a relation can be matched with two or more outputs but one input to a function can only be matched to one output.

Relation but NOT a function since input value '4' has 2 outputs.

No: input value ' 2 ' has more than one output

Is it a function?

No: input value ' 2 ' has more than one output

No (There aren't any pairings of inputs to outputs.)

Yes Each input has exactly one output (even though it's the same output)

Is it a relation?

There are at least 6 ways to show a relation between input and output values.

Ordered Pairs: $\quad(2,4),(3,2),(-4,3)$

Data table: \quad| x | 2 | 3 | -4 |
| :---: | :---: | :---: | :---: |
| y | 4 | 2 | 3 |

Equation: $y=2 x+1 \quad$ Function notation: $f(2)=4$

Graph:

Are all of these representations the same?

Vocabulary

Domain: the set made up of all of the input values that have corresponding output values.

Range: the set made up of all of the corresponding output values.

Identify the Domain

$$
\begin{aligned}
& \text { 1. (2), 4), (3) 5), (-4, } 2) \\
& \text { 2. } \begin{array}{|c|c|c|c|c|}
\hline x & 6 & (9) & -2) \\
\hline y & 4 & 7 & 3 \\
\hline
\end{array}
\end{aligned}
$$

$$
\text { 4. } 2,3,-4,-5
$$

input

$$
\begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& -2 \\
& -5 \\
& \hline
\end{aligned}
$$

What are 6 ways you can show a relation between input and output?

Ordered Pairs

Data table
Equation
Graph
Function notation: $f(2)=4$

Mapping

$y=f(x) \quad$ Function Notation

When we say " y is a function of x " we mean:

We are "doing math" (performing mathematical operations) on the input value ' x ' to determine the corresponding output value ' y '.

Which of the following equations is " ' y ' a function of x "?

$$
x=\frac{1}{2} y-3
$$

$$
y=2 x+6
$$

Absolute Value Function

$$
f(x)=|x|
$$

Fill in the table, then graph the $x-y$ pairs.

x	y
-2	2
-1	1
0	0
1	1
2	2

$y=|-2|$
$|-2|$ means
"what is the distance between -2 and zero?

Just like the Quadratic Function, the point $(0,0)$ is the vertex and there is a point in the position "right 1, up 1" (from the vertex).
$f(x)=|x| \quad g(x)=-|x|$

x	y
-2	2
-1	1
0	0
1	1
2	2

$x-$	y
-2	-2
-1	-1
0	0
1	-1
2	-2

Multiplying the parent function by -1 reflects it across the x axis.

What is the vertex?

$$
\begin{aligned}
& f(x)=|x| \quad g(x)=|x-1| \\
& \text { Fill in the table, graph the } \\
& \text { points. }
\end{aligned}
$$

Replacing ' x ' in the parent function with ' (x 1)' causes the graph to translate right ' 1 '

What is the transformation to the parent function?

$$
y=|x|
$$

$$
y=2|x-1|
$$

VSF=2, right 1

What does adding or subtraction " k " do to the parent function?

$$
f(x)=|x|+k \uparrow \quad \text { Vertical shift }
$$

What does adding or subtraction " h " do to the parent function?

$$
f(x)=|x-\vec{h}| \quad \text { Horizontal shift }
$$

What does multiplying by 'a' do to the parent function?

$$
f(x)=|a| x \mid \quad \text { Vertical stretch }
$$

What does multiplying by (-1) do to the parent function?

$$
f(x)=-|x| \text { Reflection (x-axis) }
$$

What equation has been graphed? $f(x)=|x|$

1) Vertex has moved left 2 and up 4.

$$
g(x)=_\quad|x+2|+4
$$

2) Shape of the graph: from the vertex move right 1, down 3.

\rightarrow Reflect x -axis, VSF $=3$.

$$
g(x)=-3|x+2|+4
$$

