Math-2

Lesson 2-6
Rational Exponents
$\sqrt[4]{x^{13}}$
We can simplify this in two ways

2. $\sqrt[4]{x^{12} * x^{1}} \rightarrow x^{12 / 4} * \sqrt[4]{x} \rightarrow x \sqrt[4]{x}$

We can write radical as powers!! $\sqrt[4]{x^{13}} \rightarrow x^{13 / 4}$

Radicals CAN be written as Powers

Coefficient \longrightarrow Coefficient
Radicand
\longrightarrow Base
Index \longrightarrow Denominator of the Exponent
The index number is the denominator of the exponent.

Your turn:

Write the following in "radical form"

$$
\begin{aligned}
5^{\text {th }} \text { Root of } 18 & =\sqrt[5]{18} \\
4^{\text {th }} \text { Root of } 25 & =\sqrt[4]{25}
\end{aligned}
$$

What type of number does $5^{\text {th }}$ sound like?

$$
1 / 5
$$

Are radicals related to powers?

$$
3^{1 / 2}=\sqrt[2]{3}
$$

$5^{1 / 3}=\sqrt[3]{5}$
$\sqrt[2]{x}=x^{1 / 2}$
$\sqrt[3]{7}=7^{1 / 3}$
None of these have coefficients!

$$
\begin{aligned}
& 3 \sqrt[2]{y}=3 y^{1 / 2} \\
& 5 \sqrt[3]{7}=5(7)^{1 / 3}
\end{aligned}
$$

Multiplication (by a coefficient) is "repeated addition." This explains why coefficients of radicals become coefficients of powers.

$$
\begin{gathered}
3 \sqrt[2]{y}=\sqrt{y}+\sqrt{y}+\sqrt{y} \\
\sqrt{y}=y^{1 / 2} \\
3 y^{1 / 2}=y^{1 / 2}+y^{1 / 2}+y^{1 / 2}
\end{gathered}
$$

What happens if there is a product under the radical?

$$
\begin{gathered}
\sqrt[2]{x y}=(x y)^{1 / 2} \\
5 \sqrt[3]{3 x}=5(3 x)^{1 / 3} \\
2 \sqrt[4]{21 m n} \quad=2(21 m n)^{1 / 4}
\end{gathered}
$$

How did we show that the index number applied to the entire product (radicand) when re-written in "power form"?

Power of a product \rightarrow product inside parentheses with an exponent.

What happens if there is a power under the radical?

$$
\begin{aligned}
& \sqrt[5]{x^{2} y}=\left(x^{2} y\right)^{1 / 5}=x^{2 / 5} y^{1 / 5} \\
& 6 \sqrt[3]{3 m^{2}}=6\left(3 m^{2}\right)^{1 / 3}=6\left(3^{1 / 3}\right) m^{2 / 3}
\end{aligned}
$$

How did we show that the index number applied to the entire product (including the power) when re-written in "power form"?

Power of a product \rightarrow product inside parentheses with an exponent.
"Exponential Form" that has both a numerator and denominator
The exponent can be written as a rational number.

Numerator:
Exponent of the base.

$$
=\sqrt[2]{x^{5}}
$$

Denominator:
Root of the base.

$$
\sqrt[3]{2^{2}}=2^{2 / 3}
$$

Radical Form
Exponential Form

Write the following radicals as powers.

$$
\begin{aligned}
& \sqrt[2]{3 m} \rightarrow(3 m)^{1 / 2} \\
& 4 \sqrt[3]{5 y} \rightarrow 4(5 y)^{1 / 3}
\end{aligned}
$$

$3 m \sqrt[4]{6 n} \rightarrow 3 m(6 n)^{1 / 4}$
$\sqrt[5]{x^{3} y^{2}} \rightarrow\left(x^{3} y^{2}\right)^{1 / 5} \rightarrow x^{3 / 5} y^{2 / 5}$
$5 \sqrt[4]{3 m^{2}} \rightarrow 5\left(3 m^{2}\right)^{1 / 3} \rightarrow 5\left(3^{1 / 3}\right) m^{2 / 3}$

Rewrite in "radical form"
$m^{1 / 5} \rightarrow \sqrt[5]{m}$
$3 \mathrm{~nm}^{1 / 4} \rightarrow 3 n \sqrt[4]{m}$
$2\left(18 n^{2}\right)^{1 / 6} \rightarrow 2 \sqrt[6]{18 n^{2}}$
$5\left(4 x^{2} y^{6}\right)^{1 / 3} \rightarrow 5 \sqrt[6]{4 * x^{2} * y^{6}} \rightarrow 5 y \sqrt[3]{4 x^{2}}$

Multiply Powers Property

$$
y^{2} * y^{3}=? \quad=y^{2+3}=y^{5}
$$

When multiplying "same based powers" add the exponents.

Multiply Powers Property Add exponents

$x^{\frac{2}{3}} * x^{\frac{3}{4}} \rightarrow x^{\frac{2}{3}+\frac{3}{4}} \quad$ Yes, you must be able to add fractions
Working with just the exponent \rightarrow

$$
\frac{2}{3}+\frac{3}{4}
$$

Multiply by " 1 " in the form of... $\rightarrow \quad \frac{4}{4} * \frac{2}{3}+\frac{3}{4} * \frac{3}{3} \quad \rightarrow \frac{8}{12}+\frac{9}{12} \rightarrow \frac{17}{12}$
Rewrite the power $\rightarrow \quad \rightarrow x^{\frac{17}{12}}$

Exponent of a Power Property

$$
\left(y^{2}\right)^{3}=? \quad=y^{2 * 3}=y^{6}
$$

When multiplying "same based powers" add the exponents.

Exponent of a Power Property

$$
\begin{aligned}
& \left(y^{1 / 2}\right)^{2 / 3}=y^{\frac{1}{2} * \frac{2}{3}}=y^{\frac{2}{6}}=y^{\frac{1}{3}} \\
& \left(\frac{x^{2}}{y^{3 / 2}}\right)^{2 / 3}=\frac{x^{\frac{2}{1} * \frac{2}{3}}}{y^{\frac{3}{2} * \frac{2}{3}}}=\frac{x^{\frac{4}{3}}}{y^{1}}
\end{aligned}
$$

Exponent of a Power Property Multiply exponents

$$
\begin{aligned}
& \left(x^{\frac{3}{4}} y^{5}\right)^{\frac{1}{3}} \rightarrow x^{\frac{3}{4} * \frac{1}{3}} y^{\frac{5}{1} * \frac{1}{3}} \rightarrow x^{\frac{1}{4}} y^{\frac{5}{3}} \\
& 3 x\left(y^{1 / 5}\right)^{2 / 3}=3 x y^{\frac{1}{5} * \frac{2}{3}}=3 x y^{\frac{2}{15}}
\end{aligned}
$$

Negative Exponent Property

Grab and drag same-based powers to be next to each other.

$$
\frac{x^{2} y^{2 / 3}}{y^{-1 / 2}}=x^{2} y^{2 / 3} y^{1 / 2}=x^{2} y^{\frac{2}{3}+\frac{1}{2}}=x^{2} y^{\frac{4}{6}+\frac{3}{6}}=x^{2} y^{\frac{7}{6}}
$$

$$
\frac{2 x^{\frac{1}{3}}}{x^{\frac{2}{3}}} \rightarrow \frac{2}{x^{\frac{2}{3}} x^{-\frac{1}{3}}} \rightarrow \frac{2}{x^{\frac{1}{3}}} \quad \frac{\text { Not allowed to have rational }}{\text { exponents in the denominator }}
$$

$$
\rightarrow 2 x^{-1 / 3} \quad \frac{\text { Not allowed to have }}{\text { negative exponents. }}
$$

Rational Exponents in the Denominator

$$
\frac{1}{y^{1 / 2}}=\frac{1}{\sqrt{y}} \quad \begin{aligned}
& \text { Rational exponent in the denominator means } \\
& \text { irrational denominator, which we rationalize }
\end{aligned}
$$

$$
\frac{1}{y^{1 / 2}}=\frac{1}{\sqrt{y}} * \frac{\sqrt{y}}{\sqrt{y}}=\frac{\sqrt{y}}{y}
$$

Rational exponent in the denominator \rightarrow what is the next bigger natural number from $1 / 2$?
 1
What number do you add to $1 / 2$ to get 1 ? In order to add a number to an exponent you have to multiply by a same-based power with the exponent you are trying to add.

Negative Exponent Property

$\frac{2 x^{\frac{1}{3}}}{x^{\frac{2}{3}}} \rightarrow \frac{2}{x^{\frac{2}{3}} x^{-\frac{1}{3}}} \rightarrow \frac{2}{x^{\frac{1}{3}}}$
What is the next bigger whole number than $1 / 3$?
1
What number do you add to $1 / 3$ to get 1 ?
2/3
Multiply by one "in the form of" a same-base power whose exponent is $2 / 3$ (both numerator and denominator)

$$
\begin{aligned}
& x^{2 / 3} x^{3 / 4}=x^{\frac{2}{3}+\frac{3}{4}} \\
= & x^{\left(\frac{2}{3} * \frac{4}{4}\right)+\left(\frac{3}{4} * \frac{3}{3}\right)}=x^{\frac{8}{12}+\frac{9}{12}}=x^{\frac{17}{12}}
\end{aligned}
$$

Negative Exponent Property

$$
\begin{aligned}
& \frac{x^{2}}{y^{-1 / 2}}=x^{2} y^{1 / 2} \\
& \frac{y^{-3}}{x^{-3 / 2}}=\frac{x^{3 / 2}}{y^{3}}
\end{aligned}
$$

We don't want negative exponents in our answers

