
Math-2

Lesson 2-6

Rational Exponents
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We can write radical as powers!!
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Radicals CAN be written as Powers
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The index number is the denominator of the exponent.



Your turn:

Write the following in “radical form”

5th Root of 18 

4th Root of 25

What type of number does 5th sound like?
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Are radicals related to powers?
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Multiplication (by a coefficient) is “repeated addition.” 

This explains why coefficients of radicals become 

coefficients of powers.
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What happens if there is a product under the radical?
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How did we show that the index number applied to the 

entire product (radicand) when re-written in “power form”?

Power of a product  product inside parentheses with an exponent.
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What happens if there is a power under the radical?
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How did we show that the index number applied to the 

entire product (including the power) when re-written in 

“power form”?

Power of a product  product inside parentheses with an exponent.
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The exponent can be written as a rational number. 
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Numerator: 

Exponent of the base.
Denominator: 

Root of the base.

Radical Form Exponential Form

“Exponential Form” that has both
a numerator and denominator
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Write the following radicals as powers.
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Rewrite in “radical form”
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Multiply Powers Property

When multiplying “same based powers” add the exponents.
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32 y 5y



Multiply Powers Property Add exponents
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Working with just the exponent 

Multiply by “1” in the form of…
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Yes, you must be able to add fractions



Exponent of a Power Property

When multiplying “same based powers” add the exponents.
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Exponent of a Power Property
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Exponent of a Power Property Multiply exponents
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Negative Exponent Property

2
1

3
2

2


y

yx 2
1

3
2

2 yyx

Grab and drag same-based powers to be next to each other.
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Not allowed to have rational 

exponents in the denominator
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Not allowed to have 

negative exponents.



Rational Exponents in the Denominator
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Rational exponent in the denominator means 

irrational denominator, which we rationalize
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Rational exponent in the denominator  what 

is the next bigger natural number from ½ ?

1

What number do you add to ½ to get 1?

In order to add a number to an exponent you 

have to multiply by a same-based power with 

the exponent you are trying to add.



Negative Exponent Property
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What is the next bigger whole number than 1/3 ?
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What number do you add to 1/3 to get 1?

Multiply by one “in the form of” a 

same-base power whose exponent is 

2/3 (both numerator and denominator)
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Your turn:
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Negative Exponent Property
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