Math-2 Lesson 2-4 Radicals

$\sqrt{3}$ What number is equivalent to the square root of 3 ?
$x=\sqrt{3}$ Square both sides of the equation
$(x)^{2}=(\sqrt{3})^{2} \quad x^{2}=3$
$x=\sqrt{3}$ is an equivalent statement to $x^{2}=3$

$$
\begin{array}{rlrl}
\sqrt{3} & \approx 1.732 & & \text { There is no equivalent number } \\
& \approx 1.7321 & \text { The decimal, is just an approximation. } \\
& \approx 1.73205 & \\
& \approx 1.732051 & \\
& \approx 1.7320508 \ldots
\end{array}
$$

$x=\sqrt[2]{3} \quad$ The "square root of 3 " means: $x^{2}=3 \quad$ "what number squared equals 3 ?"
$x=\sqrt[3]{4} \quad$ The "3rd root of 4" means:
$x^{3}=4$
$x=\sqrt[5]{2}$ The " $5^{\text {th }}$ root of 2" means:
$x^{5}=2 \quad$ "what number used as a factor 5 times equals 2?"

Adding and subtracting radicals

Can these two terms be combined using addition? $3 x+2 x$ Write $3 x$ as repeated addition $x+x+x$ Write 2 x as repeated addition $x+x$

$$
3 x+2 x \rightarrow x+x+x+x+x \rightarrow 5 x
$$

When multiplication is written as repeated addition, "like terms" look exactly alike.
$3 \sqrt{x}+2 \sqrt{x} \rightarrow \sqrt{x}+\sqrt{x}+\sqrt{x}+\sqrt{x}+\sqrt{x} \rightarrow 5 \sqrt{x}$
$3 \sqrt{6}+2 \sqrt{6} \rightarrow \sqrt{6}+\sqrt{6}+\sqrt{6}+\sqrt{6}+\sqrt{6} \rightarrow 5 \sqrt{6}$

Define "like powers" "Same base, same exponent".

$$
3 x^{4}+2 x^{4} \rightarrow 5 x^{4}
$$

Define "like radicals" "Same radicand, same index number".

$$
3 \sqrt{6}+2 \sqrt{6} \rightarrow 5 \sqrt{6}
$$

Which of the following are "like radicals" that can be added?

$$
\begin{array}{ll}
\sqrt{2}+\sqrt{3} & \sqrt[4]{5}+\sqrt[4]{5} \\
2 \sqrt{3}+3 \sqrt{2} & 3 \sqrt[5]{2}+4 \sqrt[5]{2} \\
\sqrt[4]{2}+\sqrt[3]{2} & 6 \sqrt[3]{4}+6 \sqrt[4]{4}
\end{array}
$$

$$
\sqrt{3}+\sqrt{2} \rightarrow \sqrt{3+2}=\sqrt{5} \quad \text { Are they equivalent? }
$$

$$
\sqrt{3} \approx 1.7321 \ldots \quad \sqrt{2} \approx 1.4142 \ldots
$$

$$
\sqrt{3}+\sqrt{2} \approx 3.1462 \ldots \sqrt{5} \approx 2.2630 \ldots
$$

$$
\sqrt{3}+\sqrt{2} \neq \sqrt{5}
$$

$$
\sqrt{a}+\sqrt{b} \neq \sqrt{a+b}
$$

This is NOT a property of radicals. NEVER DO THIS!!!!

$$
\begin{aligned}
& \sqrt{4}+\sqrt{9} \rightarrow \sqrt{13} \\
& \sqrt{4}+\sqrt{9} \rightarrow 2+3 \rightarrow 5 \neq \sqrt{13}
\end{aligned}
$$

Simplify the following:
$3 \sqrt{2}+5 \sqrt{2} \rightarrow 8 \sqrt{2}$
$5 \sqrt{3}-4 \sqrt{3} \rightarrow \sqrt{3}$
$\sqrt{5}+3 \sqrt{5} \rightarrow 4 \sqrt{5}$
$7 \sqrt{6 x}+2 \sqrt{6 x} \rightarrow 9 \sqrt{6 x}$
$3 \sqrt{x}+2 \sqrt{x} \rightarrow 5 \sqrt{x}$
$5 \sqrt{2 x}-\sqrt{5 x}+3 \sqrt{5 x} \rightarrow 5 \sqrt{2 x}+2 \sqrt{5 x}$
$7 \sqrt{6}+2 \sqrt{24}$ not "like terms" in their present form
$\sqrt{3} * \sqrt{2}$
$\sqrt{3 * 2} \rightarrow \sqrt{6}$
Will this work?

$$
\begin{gathered}
\sqrt{3} \approx 1.7321 \ldots \quad \sqrt{2} \approx 1.4142 \ldots \\
\sqrt{3 * \sqrt{2} \approx 2.4495} \\
\sqrt{6} \approx 2.4495
\end{gathered}
$$

Product of Radicals Property

$$
\sqrt{5} * \sqrt{2}=\sqrt{10}
$$

$\sqrt{4} * \sqrt{9} \rightarrow \sqrt{4 * 9}$

$$
\begin{gathered}
2 * 3 \rightarrow \sqrt{36} \\
2 * 3 \rightarrow 6 \\
6=6
\end{gathered}
$$

Are these equivalent?

$$
\sqrt{a} * \sqrt{b}=\sqrt{a b}
$$

Although I only gave two examples, it actually DOES WORK for whole number radicand.

$$
\sqrt{a} * \sqrt{b}=\sqrt{a b}
$$

Simplify the following:

$$
\begin{array}{ccc}
3 \sqrt{8} * 5 \sqrt{2} & 2 \sqrt{3} * 3 \sqrt{5} & \rightarrow 6 \sqrt{15} \\
3 * \sqrt{8} * 5 * \sqrt{2} & 7 \sqrt{6} * 2 \sqrt{5} & \rightarrow 14 \sqrt{30} \\
3 * 5 * \sqrt{8} * \sqrt{2} & & \\
15 * \sqrt{8} * \sqrt{2} & \sqrt{5}+3 \sqrt{5} & \rightarrow 4 \sqrt{5} \\
15 * \sqrt{16} & 7 \sqrt{6}+2 \sqrt{6} & \rightarrow 9 \sqrt{6} \\
15 * 4=60 & &
\end{array}
$$

Simplify radicals: use the Product of Radicals to "break apart" the radical into a "perfect square" times a number.

$$
\sqrt{a} * \sqrt{b}=\sqrt{a b}
$$

$$
\sqrt{18} \rightarrow \sqrt{9} * \sqrt{2} \rightarrow 3 * \sqrt{2} \rightarrow 3 \sqrt{2}
$$

Simplify
$\sqrt{24} \rightarrow \sqrt{4} * \sqrt{6} \rightarrow 2 \sqrt{6}$
$3 \sqrt{32 x^{2}} \rightarrow 3 * \sqrt{16} * \sqrt{x^{2}}+\sqrt{2} \rightarrow 3 * 4 * x * \sqrt{2} \rightarrow 12 x \sqrt{2}$

$$
\begin{aligned}
-2 \sqrt{56 x^{3} y} & \rightarrow-2 * \sqrt{x^{2}} * \sqrt{8 * 7 x y} \\
& \rightarrow-2 * x * \sqrt{4} * \sqrt{2 * 7 x y} \\
& \rightarrow-4 x \sqrt{14 x y}
\end{aligned}
$$

Stop Here

Can we add "unlike" radicals?

$$
\sqrt{a} * \sqrt{b}=\sqrt{a b}
$$

Simplify $7 \sqrt{6}+2 \sqrt{24} \rightarrow 7 \sqrt{6}+(2 * \sqrt{4} * \sqrt{6})$

$$
\begin{aligned}
& \rightarrow 7 \sqrt{6}+(2 * 2 * \sqrt{6}) \\
& \rightarrow 7 \sqrt{6}+4 \sqrt{6} \\
& \rightarrow 11 \sqrt{6}
\end{aligned}
$$

$$
\begin{aligned}
-3 \sqrt{32}+2 \sqrt{8} \rightarrow & (-3 * \sqrt{16} * \sqrt{2})+(2 * \sqrt{4} * \sqrt{2}) \\
& \rightarrow(-3 * 4 * \sqrt{2})+(2 * 2 * \sqrt{2}) \\
& \rightarrow-12 \sqrt{2}+4 \sqrt{2} \\
& \rightarrow-8 \sqrt{2}
\end{aligned}
$$

Simplify radicals: use the Product of Radicals to "break apart" the radical into a "powers of exponent ' m '" times a number.

$$
\begin{array}{r}
\sqrt[m]{a} * \sqrt[m]{b}=\sqrt[m]{a b} \\
\sqrt[3]{x^{4}} \rightarrow \sqrt[3]{x^{3}} * \sqrt[3]{x} \rightarrow x \sqrt[3]{x}
\end{array}
$$

Simplify
$\sqrt[4]{3 x^{5} y} \rightarrow \sqrt[4]{x^{4}} * \sqrt[4]{3 x} \rightarrow x \sqrt[4]{3 x}$
$3 \sqrt[3]{16 x^{2} y^{5}} \rightarrow 3 * \sqrt[3]{8} * \sqrt[3]{y^{3}} * \sqrt[3]{2 x^{2} y^{2}}$

$$
\rightarrow 3 * \sqrt[3]{2^{3}} * \sqrt[3]{y^{3}} * \sqrt[3]{2 x^{2} y^{2}}
$$

$$
\rightarrow 3 * 2 * y * \sqrt[3]{2 x^{2} y^{2}}
$$

$$
\rightarrow 6 y \sqrt[3]{2 x^{2} y^{2}}
$$

Another way to Simplify Radicals Factor, factor, factor!!!
$\sqrt{54} \rightarrow \sqrt[2]{54} \rightarrow \sqrt[2]{2 * 27} \rightarrow \sqrt[2]{2 * 3 * 9} \rightarrow \sqrt[2]{2 * 3 * 3 * 3)}$
What is the factor that is used ' 2 ' times under the radical?
Bring that out factor (that is used 2 times).

$$
\rightarrow 3 \sqrt[2]{2 * 3} \rightarrow 3 \sqrt{6}
$$

Using Properties of Exponents to reduce the writing:

$$
\begin{aligned}
\sqrt[4]{32 x^{6}} & \rightarrow \sqrt[4]{32 * x^{4} * x^{2}} \\
& \rightarrow x \sqrt[4]{32 * x^{2}} \\
& \rightarrow x \sqrt[4]{2^{4} * 2^{1} * x^{2}} \\
& \rightarrow 2 x \sqrt[4]{2 x^{2}}
\end{aligned}
$$

Factor the numerator!

$$
\frac{\sqrt{12}}{\sqrt{2}} \rightarrow \frac{\sqrt{2} * \sqrt{6}}{\sqrt{2}} \rightarrow \frac{\sqrt{2} * \sqrt{6}}{\sqrt{2}} \begin{aligned}
& \text { Inverse } \\
& \begin{array}{l}
\text { Property of } \\
\text { Multiplication }
\end{array} \rightarrow \sqrt{6}
\end{aligned}
$$

$\frac{\sqrt{48 x^{3}}}{\sqrt{16 x}} \rightarrow \frac{\sqrt{16 x} * \sqrt{3 x^{2}}}{\sqrt{\text { Inverse }}} \begin{aligned} & \text { Property of } \\ & \text { Multiplication }\end{aligned} \rightarrow \sqrt{3 x^{2}} \rightarrow x \sqrt{3}$
$\frac{\sqrt{56 x^{3} y}}{\sqrt{8 x y}} \rightarrow \frac{\sqrt{8 x x^{2}} * \sqrt{7 x^{2}}}{\sqrt{\text { Inverse }}} \begin{aligned} & \text { Property of } \\ & \text { Multiplication }\end{aligned} \rightarrow \sqrt{7 x^{2}} \rightarrow x \sqrt{7}$

Simplify
$\sqrt{\frac{32}{9 x^{2}}}$

$$
\frac{\sqrt{50 y^{2}}}{\sqrt{2 y}}
$$

$\frac{\sqrt{49}}{\sqrt{7}}$
$\sqrt{\frac{48}{49}}$

Rationalizing the denominator: using mathematical properties to change an irrational number (or imaginary) in the denominator into a rational number.

We take advantage of the idea:

$$
\begin{aligned}
& \sqrt{2} * \sqrt{2}=\sqrt{2 * 2}=\sqrt{4}=2 \\
& \sqrt{3} * \sqrt{3}=\sqrt{3 * 3}=\sqrt{9}=3
\end{aligned}
$$

Property of Multiplication
multiplying by ' 1 ' doesn't change the number.

$$
\begin{aligned}
& \frac{1}{\sqrt{6}} * \frac{\sqrt{6}}{\sqrt{6}} \rightarrow \frac{\sqrt{6}}{6} \\
& \frac{2}{\sqrt{6}} * \frac{\sqrt{6}}{\sqrt{6}} \rightarrow \frac{2 \sqrt{6}}{6} \rightarrow \frac{2 * \sqrt{6}}{8 * 3} \rightarrow \frac{\sqrt{6}}{3} \\
& \frac{25}{\sqrt{15}} * \frac{\sqrt{15}}{\sqrt{15}} \rightarrow \frac{25 \sqrt{15}}{15} \rightarrow \frac{3 * 5 * * \sqrt{15}}{5 * 3} \rightarrow \frac{5 \sqrt{15}}{3} \\
& \frac{14}{3 \sqrt{21}} * \frac{\sqrt{21}}{\sqrt{21}} \rightarrow \frac{14 \sqrt{21}}{3 * 21} \rightarrow \frac{2 * * * * \sqrt{21}}{3 * z * 3} \rightarrow \frac{2 \sqrt{21}}{9}
\end{aligned}
$$

In all of the previous examples we just multiplied by "one in the form of" the denominator radical over the denominator radical.
$\frac{3 \sqrt{7}}{\sqrt{8}}$

$$
\rightarrow \frac{3 \sqrt{7}}{\sqrt{8}} * \frac{\sqrt{8}}{\sqrt{8}}
$$

It is always easier to simplify (by factoring) BEFORE you multiply

$$
\frac{3 \sqrt{7}}{\sqrt{8}} \rightarrow \frac{3 \sqrt{7}}{\sqrt{4} * \sqrt{2}} \rightarrow \frac{3 \sqrt{7}}{2 \sqrt{2}} * \frac{\sqrt{2}}{\sqrt{2}} \rightarrow \frac{3 \sqrt{14}}{2 * 2} \rightarrow \frac{3 \sqrt{14}}{4}
$$

$$
\frac{6 \sqrt{5}}{3 \sqrt{12}} \rightarrow \frac{\beta * 2 * \sqrt{5}}{3 * \sqrt{4} * \sqrt{3}} \rightarrow \frac{2 * \sqrt{5}}{2 * \sqrt{3}} \rightarrow \frac{\sqrt{5}}{\sqrt{3}} * \frac{\sqrt{3}}{\sqrt{3}} \rightarrow \frac{\sqrt{15}}{3}
$$

What about variables?
$\frac{3}{\sqrt{5 x}} * \frac{\sqrt{5 x}}{\sqrt{5 x}} \rightarrow \frac{3 \sqrt{5 x}}{5 x}$
$\frac{\sqrt{15}}{\sqrt{5 x}} \rightarrow \frac{\sqrt{5} * \sqrt{3}}{\sqrt{5} * \sqrt{x}} \rightarrow \frac{\sqrt{3}}{\sqrt{x}} * \frac{\sqrt{x}}{\sqrt{x}} \rightarrow \frac{\sqrt{3 x}}{\sqrt{x^{2}}} \rightarrow \frac{\sqrt{3 x}}{x}$

What about higher index numbers?

$$
\frac{1}{\sqrt[3]{x}} * \frac{\sqrt[3]{x^{* x}}}{\sqrt[3]{x^{* x}}} \rightarrow \frac{\sqrt[3]{x^{*} x}}{\sqrt[3]{x^{*} x^{* x}}} \rightarrow \frac{\sqrt[3]{x^{2}}}{x}
$$

How many more 'x's are needed in the denominator radicand?
Remember: the cubed root of x-cubed equals $x . \sqrt[3]{x^{3}}=x$
We need two more x's under the denominator radical.
Using the multiply powers property we don't have to write out all the individual x 's.
$\frac{1}{\sqrt[3]{x}} * \frac{\sqrt[3]{x^{2}}}{\sqrt[3]{x^{2}}} \rightarrow \frac{\sqrt[3]{x^{2}}}{x}$

$\underline{\text { Rationalize the denominator }}$

$$
\begin{gathered}
\frac{2 x}{\sqrt{3 x}} \\
\frac{3}{\sqrt[4]{x^{2}}} \\
\frac{2 \sqrt{3 y^{3}}}{\sqrt{5 y}}
\end{gathered}
$$

What about higher index numbers?

How many more ' 2 's' and ' x 's are needed in the denominator radicand?

We need one more ' 2 ' and two more ' x 's under the denominator radical.
$\rightarrow \frac{1}{3 \sqrt[3]{2 * 2 * x}} * \frac{\sqrt[3]{2 * x * x}}{\sqrt[3]{2 * x * x}} \rightarrow \frac{\sqrt[3]{2 x^{2}}}{3 * \sqrt[3]{2 * 2 * 2 * x * x * x}}$

$$
\rightarrow \frac{\sqrt[3]{2 x^{2}}}{3 * 2 * x} \rightarrow \frac{\sqrt[3]{2 x^{2}}}{6 x}
$$

What about higher index numbers?

$$
\frac{\sqrt[4]{5}}{\sqrt[4]{25 x^{3}}} \rightarrow \frac{\sqrt[4]{5}}{\sqrt[4]{5 * 5 * x^{3}}} * \frac{\sqrt[4]{5 * 5 * x}}{\sqrt[4]{5 * 5 * x}} \rightarrow \frac{\sqrt[4]{125 x}}{5 x}
$$

How many more ' 5 's' and ' x 's are needed in the denominator radicand?

We need one more ' 5 's and one more ' x ' under the denominator radical.

