Math-2

Lesson 2 - 2
 Properties of Exponents

Properties of Exponents

What is a power?
Power: An expression formed by repeated multiplication of the base.

Coefficient

The exponent applies to the number or variable immediately to its left, not to the coefficient !!!

No Exponent? $3 x=3^{1} x^{1}$

Usually, we don't write the exponent ' 1 ' (saves ink).
$\underline{\text { No Coefficient? }} \quad x^{3}=1 * x^{3}=1^{1} * x^{3}$
Usually, we don't write the coefficient ' 1 ' (saves ink).

Negative? $-x^{2}=(-1) * x^{2}=(-1)^{1} * x^{2}$
Usually, we don't write the coefficient '-1', we just put the "negative symbol" (saves ink).

Factor: a number that is being multiplied.
x^{4} means "base x used as a factor 4 times"
Base

$$
x^{4}=x^{*} x^{*} x^{*} x
$$

Power: is repeated multiplication

$$
x^{4}=x^{*} x^{*} x^{*} x
$$

multiplication: is repeated addition $3 x=x+x+x$

(adding two terms)

$3 x+4 x=(x+x+x)+(x+x+x+x)$
$3 x+4 x=7 x$
$2 x^{2}+3 x^{2}=\left(x^{2}+x^{2}\right)+\left(x^{2}+x^{2}+x^{2}\right)$
$2 x^{2}+3 x^{2}=5 x^{2}$
(multiplying two terms)
$x^{2} * x^{3}=\left(x^{*} x\right)\left(x^{*} x^{*} x\right)$
$x^{2} * x^{3}=x^{5}$

$$
\begin{aligned}
& 3 x^{2}=? \quad=3 x^{2} \quad \begin{array}{r}
\text { There's no way to } \\
\text { simplify this anymore. }
\end{array} \\
& \begin{aligned}
(3 x)^{2} & =? \quad=(3 x)(3 x)=9 x^{2}
\end{aligned} \\
& \begin{aligned}
4(3 x)^{2} & =? \text { In GEMA, exponents occur before multiplication. } \\
& =4\left(9 x^{2}\right)=4 * 9 * x^{2}=36 x^{2}
\end{aligned} \\
& \begin{aligned}
\left(\frac{x}{2}\right)^{2}=? & =\left(\frac{x}{2}\right)\left(\frac{x}{2}\right)=\frac{x^{2}}{4} \\
\left(\frac{2}{3 x}\right)^{3}=? & =\left(\frac{2}{3 x}\right)\left(\frac{2}{3 x}\right)\left(\frac{2}{3 x}\right) \quad=\frac{8}{27 x^{3}}
\end{aligned}
\end{aligned}
$$

Simplify

$$
(4 y)^{2}=?=16 y^{2}
$$

$$
2(5 x)^{2}=?=50 x^{2}
$$

$$
\left(\frac{-2}{x}\right)^{4}=? \quad=\frac{16}{x^{4}}
$$

$$
\left(\frac{x}{2}\right)^{3}=?=\frac{x^{3}}{8}
$$

Multiply Powers Property

$\left(x^{2}\right)\left(x^{3}\right)=\left(x^{*} x\right)\left(x^{*} x^{*} x\right)$
This is ' x ' used as a factor how many times?
$\left(x^{2}\right)\left(x^{3}\right)=x^{2} x^{3}=x^{2+3}=x^{5}$
' x ' used as a factor five times
When you multiply powers having the same base, you add the exponents.

Exponent of a Power Property $\left(x^{2}\right)^{3}$

$$
\left(x^{2}\right)^{3}=(x * x)(x * x)(x * x)
$$

This is ' x ' used as a factor how many times?

$$
\left(x^{2}\right)^{3}==x^{6}
$$

' x ' used as a factor six times

$$
\left(x^{2}\right)^{3}=x^{2 * 3}=x^{6}
$$

you multiply the exponents.

Exponent of a Product Property

$$
\begin{gathered}
(x y)^{2}=(x y)(x y)=x^{*} y^{*} x^{*} y=x^{*} x^{*} y^{*} y \\
=x^{2} y^{2} \\
\quad(x y)^{m}=x^{m} y^{m}
\end{gathered}
$$

This makes it seem like you can "distribute" in the exponent. This only works with the power of a product!!

$$
\begin{aligned}
& (x-y)^{2} \neq x^{2}-y^{2} \\
& (x-y)^{2}=(x-y)(x-y) \\
& \quad=x^{2}-2 x y+y^{2}
\end{aligned}
$$

Combination of

1. Power of a Product

$$
\begin{aligned}
\left(3 x^{3} y^{4}\right)^{2} & =\left(3^{1} x^{3} y^{4}\right)^{2} \\
& =3^{2} x^{6} y^{8}
\end{aligned}
$$

Constants (integer, etc.) usually have an exponent of ' 1 '.
' x ' is a number, we just don't know what it is. You treat all numbers the same (whether they are variables or constants).

$$
3 x^{2}\left(4 x^{3}\right)=?=3 * 4 *\left(x^{2}\right)\left(x^{3}\right)=12 x^{5}
$$

You can re-arrange the order of multiplication.
Coefficients of the powers are handled separately from the base and the exponent.

$$
\begin{aligned}
& \left(x^{2}\right)^{5}=?=x^{10} \\
& \left(5 x^{2}\right)\left(2 x^{3}\right)=?=10 x^{5} \\
& (2 x)\left(\frac{1}{2} x^{3}\right)=?=x^{4} \\
& 5(x)^{3} x^{4}=?=5 x^{7} \\
& \left(2 y^{5}\right)^{3}=?=8 y^{15}
\end{aligned}
$$

Be careful of exponents of negative numbers
$\left(-x^{3} y^{4}\right)^{2}$
$=\left((-1)^{1} x^{3} y^{4}\right)^{2}$ Turn negative signs into multiplication by -1 .
$=(-1)^{2} x^{6} y^{8} \quad$ This way you will be able to tell if the simplified version is positive or negative.

$$
=x^{6} y^{8}
$$

$\left(-2 x^{2} y^{6}\right)^{3}$ Negative coefficients have an exponent of ' 1 '.
$=\left((-2)^{1} x^{2} y^{6}\right)^{3}$
$=(-2)^{3} x^{6} y^{18} \quad$ A negative number raised to an odd
$=-8 x^{6} y^{18}$
simplify

$$
\left(-2 x^{2} y^{4} z\right)^{3}=-8 x^{6} y^{12} z^{3}
$$

$$
2\left(-m^{4} x^{3}\right)^{5} \quad-2 w^{20} x^{15}
$$

$$
-3\left(-2 x^{2} y z^{3}\right)^{4}=-48 x^{12}
$$

What is the difference between?

$$
\begin{aligned}
& (x)^{4} \text { and } \mathrm{x}^{4} \\
& \left(x^{2}\right)^{3} \text { and }\left(x^{3}\right)^{2} \\
& x^{4} x^{3} \text { and } x^{3} x^{4} \\
& (x+1)^{2} \text { and }(x+1)(x+1)
\end{aligned}
$$

Negative Exponent Property "Grab and drag"

$$
x^{-2}=\frac{1+x^{-2}}{1}=\frac{1}{x^{2}}
$$

When you "Grab and drag" the base and its exponent across the "boundary line" between numerator and denominator, you just change the sign of the exponent.

$$
\left(\frac{1}{x^{3}}\right)^{-2}=\left(\frac{x^{3}}{1}\right)^{2}=x^{6}
$$

Negative Exponent Property

Possible errors

$$
4 x^{-2}=\frac{4 \sqrt{x^{-2}}}{1}=\frac{4}{x^{2}}
$$

When you "Grab and drag" the base and its exponent across the "boundary line" between numerator and denominator, you just change the sign of the exponent.
DO NOT GRAB the coefficient! $\quad \frac{4 * x^{-2}}{1} \neq \frac{1}{4 x^{2}}$

Quotient of Powers Property

This is really a silly property. We don't even need to memorize this as a separate property. It's just the negative exponent property.

$$
\frac{x^{m}}{x^{n}}=x^{m-n}
$$

Power of a Quotient Property

$$
\left(\frac{x}{y}\right)^{2}=\left(\frac{x}{y}\right)\left(\frac{x}{y}\right) \quad=\frac{x^{2}}{y^{2}}
$$

General form of
Power of a quotient: $\quad\left(\frac{x}{y}\right)^{m}=\frac{x^{m}}{y^{m}},{ }^{2}$
This is another silly property. Isn't it just exponent of a product?

Zero Exponent Property

Any base raised to the zero power simplifies to one.

$$
\begin{array}{lc}
10^{3}=1000 & 2^{0}=1 \\
10^{2}=100 & (2 x)^{0}=1 \\
10^{1}=10 & 2 x^{0}=2 * 1=2 \\
10^{0}=1 &
\end{array}
$$

Combination: (1) Negative Exponent, (2) Product of Powers, (3) Power of a Power, (4) Power of a Quotient
$\left(\frac{3 x^{2} \overline{2 x} y}{2 x^{-4} y}\right)^{2}=\left(\frac{3 x^{2} x^{4}}{2 y}\right)^{2}=\left(\frac{3 x^{6}}{2 y}\right)^{2}=\left(\frac{3^{1} x^{6}}{2^{1} y^{1}}\right)^{2}$
Use the negative exponent property to "grab and drag"
same-based powers so that they are adjacent to each other.
Now you can combine the two same-based powers into one power using the multiply powers property.

$$
=\frac{3^{1 * 2} x^{6 * 2}}{2^{1 * 2} y^{1 * 2}}=\frac{3^{2} x^{12}}{2^{2} y^{2}}=\frac{9 x^{12}}{4 y^{2}}
$$

"Grab and drag"

$$
=\frac{32 x^{10} x^{-2}}{y^{17}}=\frac{32 x^{10-2}}{y^{17}}=\frac{32 x^{8}}{y^{17}}
$$

Product of powers: add the
exponents of same based powers

$$
\frac{3 x^{2} y}{2\left(x^{-4}\right) y}=\frac{3 x^{2} x^{4}}{2 y}=\frac{3 x^{2+4}}{2 y}=\frac{3 x^{6}}{2 y}
$$

Do you "grab and drag (up or down)??

$$
\frac{3 x^{2}}{2 x^{-4} y}=\frac{3}{2 x^{-4} x^{-2} y}=\frac{3}{2 x^{-4-2} y}=\frac{35}{2\left(x^{-6}\right) y}=\frac{3 x^{6}}{2 y}
$$

It doesn't matter!!!!

Do you "grab and drag (up or down)??
It doesn't matter!!!!

$$
=\frac{3 x^{2} x^{4}}{2 y}=\frac{3 x^{2+4}}{2 y}
$$

$$
=\frac{3 x^{6}}{2 y}
$$

Product of powers property: add the
exponents of like-based powers

$$
\frac{3 x^{2}}{2 x^{-4} y}=\frac{3}{2 x^{-4} x^{-2} y}=\frac{3}{2 x^{-4-2} y}=\frac{3}{2\left(x^{-6} y\right.}=\frac{3 x^{6}}{2 y}
$$

Product of powers property: add the exponents of like-based powers

Make sure when you're all done, there are NO NEGATIVE EXPONENTS remaining.

$$
\left(\frac{x^{2}}{x^{4}}\right)^{2}
$$

$$
\left(\frac{y x^{3}}{x z}\right)^{4}
$$

$$
\left(\frac{3 x^{0}}{2 x^{-1} y}\right)^{2}
$$

$$
\left(\frac{2 x^{2} y z^{-2}}{6 x^{4} y^{3} z^{3}}\right)^{2}
$$

