Math -2: Lesson 1-5 (Absolute Value)

3 And -3 are the same distance from zero.

-3 is the "opposite" of 3

Absolute Value of a number: $|x|$ The distance the number is from zero on the number line.

$$
|3|=3 \quad|-3|=3
$$

Absolute Value of a number: $|x|$ The distance the number is from zero on the number line.
$|x|=3 \quad \rightarrow|3|=3 \quad|-3|=3 \quad \rightarrow \quad x=3,-3$
Means: "what numbers are a distance of three units from zero on the number line?"

What is the solution to the equation?

$|x|=-5 \quad$ Means: "what numbers are a distance of negative five units from zero on the number line?"
What is the solution?
Is distance ever negative?
$x \mid=-5 \quad$ Has no solution.

What two numbers are 2 units away from the number 1 on the number line? $-3 \quad-2$

-1 And 3 are 2 units away from 1 (the same distance).
-1 and 3 are on opposite sides of 1
What two numbers are 3 units away from the number 2 on the number line?

-1 And 5 are 3 units away from 2 (the same distance).
-1 and 5 are on opposite sides of 2

Absolute Value: $|x-c|=d$ The number " d " is the distance between " x ' and " c " on the number line.

$$
|x-(c)|=d
$$

"c" is the "center number" and
" d " is the distance from the center number.

$$
|x-3|=2 \quad \frac{\text { (English): What numbers are exactly }}{2 \text { units from the center number " } 3 \text { "? }}
$$

$$
\begin{aligned}
& x=3 \pm 2 \\
& x=1,5
\end{aligned} \quad|x-(+3)|=2
$$

$$
\begin{gathered}
x=3-2 \\
x=1
\end{gathered}
$$

$$
x=3+2
$$

$$
x=5
$$

$$
\begin{gathered}
|x-4|=5 \\
x=4 \pm 5 \\
x=-1,9
\end{gathered} \quad \begin{gathered}
\text { (English): What numbers are exactly } \\
5 \text { units from the center number " } 4 \text { "? }
\end{gathered}|x-(+4)|=5
$$

$$
\begin{array}{ccc}
|x+6|=3 \\
x=-6 \pm 3 \\
x=-9,-3
\end{array} \underbrace{\substack{\mid x-3}}_{\substack{\text { (English): What numbers are exactly } \\
3 \text { units from the center number "-6"? } \\
|x-(-6)|}}
$$

Solve the equations. Draw a picture if necessary.

$$
|x+1|=3
$$

$$
|x-4|=5
$$

$$
|x-5|=1
$$

Another way to think about it

$$
\begin{array}{cc}
|-1|=1 & |+\underset{\sim}{\mid}|=1 \\
|\sqrt{x-5}|=1 & |x-5|=1 \\
x-5=-1 & x-5=1 \\
x=4 & x=6
\end{array}
$$

Another way to think about it.

$$
\begin{gathered}
|x+4|=5 \\
|-5|=5 \\
\begin{array}{c}
|5|=5 \\
x+4=-5 \\
x=-9
\end{array} \quad x+4=5 \\
x=1
\end{gathered}
$$

For some problems, this is a better way to think about it.

Solve algebraically

\[

\]

Solve $\quad|x-10|=-4$

This distance between ' x ' and ' 10 ' is negative 4.
Distances are NOT negative.
The absolute value always equals a positive number.

No solution!!!!

$|x|>3 \quad$ What numbers are greater than 3 units away from zero on the number line?
Find the numbers that are exactly 3 way from zero.

$$
-5-4-3-2-1 \quad 0 \quad 122345
$$

Shade all the numbers that are further away from 0 than -3 and +3

Absolute Value: $\quad|x-c|>d$
"What numbers are greater than " d " units away from the center number " c " on the number line?

$$
|x-(c)|>d
$$

What numbers are less than 2 units away from zero on the number line?

Find the numbers that are exactly 2 way from zero.

Shade all the numbers that are closer to 0 than -2 and +2

$$
\begin{gathered}
|x|<2 \rightarrow \quad \rightarrow \quad x>-2 \text { AND } x<2 \\
-2<x<2 \\
x=(-2,2)
\end{gathered}
$$

Absolute Value: $|x-c|<d$
"What numbers are less than " d " units away from the center number " c " on the number line?
" c " is the "center number" and the distance from ' c ' is less than " d " units

Solve the Inequality. Write the solution as:
a) Compound inequality
b) Interval notation
c) graph

$$
|x-5|>1
$$

$$
|x+4|<6
$$

$|2 x-3|<7$

$|x-(-4)|>6$ The center number is ' -4 '.

The distance is 6 .

$$
\begin{gathered}
x=-4-6 \\
x=-10
\end{gathered}
$$

$$
\begin{gathered}
x=-4+6 \\
x=2
\end{gathered}
$$

The boundary numbers are -10 and 2 .
The solution are the numbers that are further away from 5 than the boundary numbers.

$$
x>-10 \text { and } x<2
$$

