Math-2
 Lesson 1-4
 Solve Linear Inequalities.

What does the following inequality mean?
$x>11$ "all the numbers that are greater than 11 "
Number line equivalent: (shade all \#'s that are solutions)

Interval notation equivalent: $\quad x=(11, \infty)$
$x \leq 5 \quad$ "all the number that are less than or equal to 5 "
Number line equivalent:

Interval notation equivalent: $\quad x=(-\infty, 5]$
$5>3 \quad$ True or false?
+2 +2 Add 2 left and right (of the ">" symbol) and rewrite
$7>5 \quad$ True or false? This will always work for addition.
Addition Property of Inequality: adding the same number left and right of the " $<,>, \leq$, or \geq " symbol will result in an equivalent inequality.

$$
\begin{array}{r}
\text { x }-4>7 \\
+4+4 \\
x>11
\end{array} \quad \longleftrightarrow
$$

$2<6$ True or false?

-1 -1 Subtract " 1 " left and right (of the " $<$ " symbol) and rewrite
$1<5$ True or false? This will always work for subtraction.
Subtraction Property of Inequality: subtracting the same number left and right of the "<, >, \leq, or \geq " symbol will result in an equivalent inequality.

$$
\begin{array}{rr}
x+5 & \leq 2 \\
-5 & -5 \\
x \leq & -3
\end{array}
$$

Number line:

Your turn: $3<5$
*2 *2 Multiply by "2" left and right (of the "<" symbol), rewrite $6<10 \quad$ True or false?

This works for multiplication of positive numbers, BUT.....

$6<8$
 True or false?

-1 -1 Multiply by "-1" left and right (of the "<" symbol), rewrite $-6<-8 \quad$ True or false? $\quad-6>-8$

This will work for multiplication of negative numbers if we reverse the direction of the inequality.

Multiplication Property of Inequality: multiplying the same positive number left and right of the " $<,>, \leq$, or \geq " symbol will result in an equivalent inequality. We reverse the direction of $<,>, \geq$, and \leq if the factor is negative.

$$
-2 x \geq 6
$$

Number line:

$$
*(\div-2) \quad *\left(-\frac{1}{2}\right)
$$

$$
x \leq-3
$$

Your turn: Solve the inequalities (one step-rewrite)

$$
2 x+2 \leq 6 \quad 2(x-3) \geq 8
$$

$-14<-5 x+6$

Draw the equivalent number line for each solution.

Solving inequalities (variable on both sides of a

 single inequality symbol)

Your turn: Solve the inequality

$$
2 x-6 \leq 3-x \quad 18+2 x \geq 9 x+4
$$

$$
5(x-2)<5 x+6
$$

Draw the equivalent number line for each solution.

If you are wearing a red shirt $\underline{O R}$ if you are wearing blue pants, you will be awarded $\$ 100$. Which of the individuals below will get $\$ 100$?

Person 1: Wearing green shirt, black pants No
Person 2: Wearing red shirt, black pants yes
Person 3: Wearing red shirt, blue pants yes
Person 4: Wearing blue shirt, blue pants yes

Logical Word "OR:" two or more required conditions are given. If either of the conditions is met then the statement is true.

If you are under the age of 15 AND are walking/running with a dog, then you are pretty cool.

Which picture shows a person(s) who is(are) "pretty cool?"

Not cool (walking Not cool (under 15, Cool (under 15 and dogs but over 15) but not "walking") also walking/running) Logical Word "AND:" two or more required conditions are given. If BOTH of the conditions are met then the statement is true.

Compound Inequality: the result of combining two simple inequalities with the logical words "and" or "OR".

> "OR" type $x \leq-2$ or $x>1$

Is -3 a solution?
Or means: the numbers that satisfy either condition will make the compound inequality "true".

$$
x=(-\infty,-2] \quad U(1, \infty)
$$

"AND" type

$$
x>3 \text { and } x \leq 7
$$

Is -3 a solution?

AND means: the numbers must that satisfy both conditions will make the compound inequality "true".

"union" symbol ("or")

Solve and graph the compound inequality:
Solve each simple inequality separately.

$$
\begin{array}{ccc}
2 x+3 \leq 5 & \text { or } & x-3>2 \\
-3 \quad-3 & & +3+3 \\
2 x \leq 2 & \text { or } & x>5 \\
\div 2 \div 2 & & \\
x \leq 1 & \text { or } & x>5
\end{array}
$$

Vocabulary

Compound inequality $x>3$ and $x<5$

Hint: This can also be written as: $3<x<5$

Hint: Inequality with "and" looks like: $\rightarrow \leftarrow$

$\underline{\text { Verbal Inequalities }}$

The cost of a car is at most $\$ 20,000 . \quad c \leq \$ 20,000$
It takes Joe no less than 5 minutes to run a mile. $t \geq 5$ min

It takes between 3 and 8 months to build a house. 3 months $\leq \mathrm{t} \leq 8$ months

The cost of a loaf of bread is less than \$2

$$
c \leq \$ 2
$$

You can't buy a car for less than $\$ 8000$.
$c \geq \$ 8000$

Your turn: (a) Write in inequality notation

(b) Graph the inequality

There are least 65,000 spectators at the game.

It never gets above 100 degrees in Huntsville.

You can fit, at most, 5 cars in your garage.

Three Ways to show an Inequality

3. Number line drawing:

Compound inequalities (two inequality symbols)

$$
5 \leq x+1<9
$$

Same as: $\quad 4 \leq x<8$
KEY POINT: This is an AND inequality. Break it into two simple inequalities separated by "AND".

Your turn: Solve the inequality

$$
-3<x-4 \leq 3
$$

$-5<x+1$ and $x+1 \leq 6$
$4 x-7 \leq 5$ or $3 x+2>23$

Sometimes there is no solution

Solution: the value(s) of the variable that make the statement true.

$$
\begin{array}{rll}
2(x-4) & \ngtr 2 x+1 & \begin{array}{l}
\text { No solution: when the } \\
2 x-8
\end{array} \\
-2 x & 2 x+1 & \begin{array}{l}
\text { variable dissappears and } \\
\text { the resulting statement is }
\end{array} \\
-2 x & \text { false. }
\end{array}
$$

Sometimes the solution is all real numbers.

$4 x-5$	$\leq 4(x+2)$
$4 x-5$	$\leq 4 x+8$
$-4 x$	$-4 x$

$-5 \leq 8$

Infinitely many solutions:
when the variable dissappears and the resulting statement is true.

