\qquad

1) Convert to exponential form: $(\sqrt{7 b})^{3}$
2) Convert to radical form:
$(7 a)^{\frac{4}{3}}$
3) Solve by factoring:
$6 x^{2}+19 x-7=0$
4) Perform the indicated operation;
$h(x)=3 x+3$
$g(x)=x^{2}-2$
Find $(h \circ g)(3)$

Simplify.
5) $(1+6 i)(-1+2 i)$
6) $\frac{-9-10 i}{-10+7 i}$
7) $-\sqrt{24}-\sqrt{54}$
8) $-3 \sqrt{5}+2 \sqrt{45}$
9) $2 x^{\frac{1}{4}} y^{\frac{1}{3}} \cdot 3 x^{2} y^{\frac{1}{3}}$
10) $\left(x^{\frac{4}{3}}\right)^{\frac{1}{2}}$
11) $\sqrt{3}(-2 \sqrt{2}+2)$
12) $\sqrt[3]{216 x^{4} y}$
13) Write the eqaution for the graph. The graph passes through the ordered pairs $(0,1)$ and $(1,0)$

15) Write the eqaution for the graph. The graph passes through the ordered pairs $(0,-1)$ and $(-1,3)$

14) Write the eqaution for the graph. The graph passes through the ordered pairs $(0,4)$ and $(1,10)$

16) Write the eqaution for the graph. The graph passes through the ordered pairs $(0,1)$ and (-1, 10)

17) Krypton- 89 has a half-life of 3.16 minutes.
a) How many half lives is 20 minutes?
b) Derive the equation that models the decay of Krypton- 89.
c) If the original amount of Krypton-89 was 75 grams, how much would remain after 10 minutes?
18) Radium- 228 has a half-life of 1600 years.
a) How many half lives is 12,000 years?
b) Derive the equation that models the decay of Radium- 228 .
c) If the original amount of Radium- 228 was 45 grams, how much would remain after 2500 years?

