$\qquad$

1) One order at "In-n-Out Burger" had 4 hamburgers and 5 large milkshakes. The total cost (without tax) was $\$ 21.56$. Another order had 13 hamburgers and 8 milkshakes. The total cost (without tax) was $\$ 57.57$. Let $\mathrm{x}=\operatorname{cost}$ of a hamburger, $\mathrm{y}=\operatorname{cost}$ of a milkshake
(a) Write two equations that relate the total cost of the order to the number/cost of the hamburgers and drinks.
(b) Solve the sytem of equations by graphing. What is the cost of a hamburger? What is the cost of a milkshake?
2) One order at "Joe's Pizza Bar" had 12 large pizzas and 5 small pizzas. The total cost (without tax) was $\$ 135.75$. Another order had 3 large pizzas and 7 small pizzas. The total cost (without tax) was $\$ 72.75$. Let $\mathrm{x}=$ cost of a large pizza, $\mathrm{y}=\operatorname{cost}$ of a small pizza
(a) Write two equations that relate the total cost of the order to the number/cost of the large/small pizzas
(b) Solve the sytem of equations by graphing. What is the cost of a large pizza? What is the cost of a small pizza?

Solve each compound inequality (you'll get a compount inequality) and then graph its solution.
3) $m+8 \leq 18$ and $m-4>-9$


Solve each inequality. Provide the solution in "interval notation."
4) $(x-2)(x-6)>0$

## Simplify.

5) $3 \sqrt[4]{3}-2 \sqrt[4]{48}$
6) $3 \sqrt[3]{5}-3 \sqrt[3]{40}$

Solve each system by graphing.
7) $y=\frac{1}{4} x+1$
8) $y=\frac{1}{2} x-1$

$$
y=\frac{5}{2} x+3
$$

9) $y=-\frac{1}{4} x+1$
10) $\begin{aligned} & y=-x-1 \\ & 2 x+2 y=-2\end{aligned}$
$y=\frac{1}{2} x+4$
11) $y=-\frac{1}{4} x+4$
12) $y=\frac{3}{2} x-3$
$y=\frac{1}{4} x+2$

Solve each system by substitution.

$$
\text { 13) } \begin{aligned}
y & =2 x+2 \\
y & =-5 x+9
\end{aligned}
$$

14) $y=x-3$
$y=-7 x-19$
15) $8 x-3 y=-13$
$y=-7 x-15$
16) $2 x-3 y=1$ $y=4 x+3$
17) $x+6 y=5$
$-5 x-2 y=3$
18) $x-7 y=9$
$-5 x-4 y=-6$
