SM2 HW #6-2 (Two-variable Inequalities)

Date_____ Period____

Sketch the graph of each linear inequality.

1)
$$y \le \frac{1}{2}x + 1$$

2)
$$y \ge -\frac{5}{4}x$$

3)
$$y < \frac{8}{3}x - 3$$

4)
$$y < -5$$

5)
$$x \ge 3$$

6)
$$y < -2x + 2$$

- 7) a) Graph the solution to the inequality.
 - b) Write the solution in interval notation.

- 9) Rewrite in vertex form: $y = x^2 - 10x + 24$
- 11) Find the product: $(7k-1)^2$
- 13) a) What is the equation?
 - b) Where is the function positive?

- 8) a) Graph the solution to the inequality.
 - b) Write the solution in interval notation.

$$2x^{2} - 8x - 24 \ge 0$$

- 10) $y = x^2 4x 6$
- 12) Convert the intercept form: $y = 2x^2 + 3x 14$

- 14) The width of a rectangle is 2 less than 3 times its length. If the area of the rectangle is 100 square feet:
 - a) Write the equation that relates ther information in the sentence above.
 - b) Solve by graphing to find the length and width of the rectangle.
- 15) You have 80 feet of fence. You want to use a large barn to enclose one side of the corral. a) Draw and overhead view of the corral.
 - b) Write the equation used to calculate the area.
 - c) What is the maximum area enclosed by the fence?
 - d) What are the side lengths of the corral?
- 16) A ball is thrown upward from the top of a 100 foot building (10 stories tall) initial velocity of 35 ft/sec. The equation modeling this situation is $h(t) = -16t^2 + 35t + 100$
 - a) What is the ball's maximum height above ground level?
 - b) How many seconds after it was thrown will it reach the maximum height?
 - c) How many seconds after it was thrown will it hit the ground?