Math-2 HANDOUT 2-1 (Number Systems)

Natural numbers: the \qquad numbers that are usually shown on a number line.

Whole numbers: the \qquad numbers and the number \qquad
Write the integer -3 as a rational number.
Are these all the same thing? $\frac{-3}{1}, \frac{3}{-1},-\frac{3}{1}, \frac{-3}{-1}$

Why is -3 not equal to $\frac{-3}{-1}$?
When converting a rational number into its \qquad (using
division) the decimal with either "terminate" $\overline{(1 / 2=0.5)}$ or repeat (2/3 = 0.66666 \ldots).

Irrational numbers: cannot be written as a \qquad
The decimal version of an irrational number never and never \qquad ($0=5.13257306 \ldots$..

If we see the radical symbol, the number is usually \qquad (unless it is a "perfect square).
$\sqrt{3}$

$$
\sqrt{4}=2(\text { rational } \#)
$$

What numbers system does SQRT(5) number belong to?

Identify the number system

(1) $\frac{2}{3}$
(2) $\sqrt{7}$
(3) $5.25 \quad$ (4) 26
(5) π

Natural
Whole
Integer
Rational
Irrational

	$\sqrt{-1}$
The square root of $-1:$	$x=\sqrt{-1}$

really means, " \qquad ".
$x^{2}=$ \qquad What real number when squared becomes a negative number?

It \qquad so it must be an " \qquad "

$$
\sqrt{-3}=\sqrt{(-1) * 3}=\sqrt{(-1)} * \sqrt{3}=i \sqrt{3}
$$

New number systems are needed when a number system is not "closed" for a particular operation (the square root of -1)

What number system is closed for all operations (except division)?

The Complex Number System. $\quad \mathbf{a}+\mathbf{b i}$

$$
\begin{aligned}
& \text { Simplify: } \\
& (2-3 i)-(-4-5 i) \\
& 7 i-(2-3 i) \\
& 3 i^{*} 4 i \\
& a-3 i=4+b i \\
& a=?, b=? \\
& 2(4+3 i) \\
& (4+2 i)(3+5 i)
\end{aligned}
$$

Additional material

1. The reason why we want to use " i " instead of $\sqrt{-1}$ is because mathematical operations are much easier for letters than with $\sqrt{-1}$
2. Multiplication is "repeated addition". $x+x+x=3 x$
' x ' used as an addend 3 times is the same as 3 times ' x '.
3. Exponents are "repeated multiplication". $x * x * x * x=x^{4}$
' x ' used as a factor 4 times is the same as ' x ' with an exponent of ' 4 '.
4. If we combine items 1 and 3 we have:

$$
i^{3}=i^{2} * i=(-1) * i=-i
$$

5. "touching" means multiplication. $2 x * 3 x=2 * x * 3 * x$
6. Commutative Property (of multiplication or addition): the order of the addends doesn't matter. $2+3=3+2$
the order of the factors doesn't matter $2 * 3=3 * 2$
\rightarrow You can rearrange the order if it makes it easier.

$$
2 x * 3 x=2 * x * 3 * x=2 * 3 * x * x=6 x^{2}
$$

7. We an only multiply (or add) a pair of numbers in one step.

$$
2 * 3 * 4=(2 * 3) * 4=6 * 4=24
$$

