Math-2

Lesson 9-4
Modeling Radioactive
Decay Using the
Exponential Function

$\begin{aligned} & g(x)=a b^{x}+k \\ & \text { 1) Horizontal Asymptote: } y=0\end{aligned}$		d $(2,15)$
$g(x)=a b^{x}+k \quad k=0$		
Equation: $y=a b^{x}$		
2) y-intercept: $(0,3)$		
$3=a b^{0} \quad a=3$		${ }^{\circ}(1, ?)$
Equation: $y=3 b^{x}$		
$15=3 b^{2}$	4.3.1	$1^{2}{ }^{3}$
$5=b^{2}$		
$\sqrt[2]{b^{2}}=\sqrt[2]{5}$		
$b=2.236$ 寿 $\quad y=3(2$	236) ${ }^{x}$	

$$
g(x)=a b^{x}+k
$$

1) Horizontal Asymptote: $\mathrm{y}=0$

$$
g(x)=a b^{x}+k \quad k=0
$$

Equation: $y=a b^{x}$
2) y-intercept: $\quad(0,3)$

$$
3=a b^{0} \quad a=3
$$

$$
\text { Equation: } \quad y=3 b^{x}
$$

3) An x-y pair (preferably with $x=1$)
$(3,10)$
$10=3 b^{3}$
$3.333=b^{3}$
$\sqrt[3]{b^{3}}=\sqrt[3]{3.3333}$
$b=1.4938 \quad y=3(1.4938)^{x}$

Quantity: a category of measurements in the real world.

 Unit of Measure: the unit that is used to measure a quantity.| Examples of
 quantities: | Examples of
 units of measure: |
| :--- | :---: |
| Height | (Height) \rightarrow inches, feet, miles |
| Weight | (Weight) \rightarrow pounds, kilograms |
| Temperature | (Temperature) \rightarrow degrees Fahrenheit |
| | or Celsius |

-Uranium-238 decays with a half-life of 4.5 billion years to thorium-234 - which decays with a half-life of 24 days to protactinium- 234 - which decays with a half-life of 24 days to protactinium-234 -which decays with a half-life of 240 thousand years to thorium-230 -which decays with a half-life of 77 thousand years to radium- 226 -which decays with a half-life of 77 thousand years to radium-226
-which decays with a half-life of 3.8 days to polonium- 218
•which decays with a half-life of 3.8 days to polonium-218
-which decays with a half-life of 3.1 minutes to lead-214
-which decays with a half-life of 3.1 minutes to lead-214
-which decays with a half-life of 27 minutes to bismuth- 214
-which decays with a half-life of 20 minutes to polonium-214
-which decays with a half-life of 160 microseconds to lead-210
-which decays with a half-life of 160 microseconds to lead-210
-which decays with a half-life of 22 years to bismuth-210
-which decays with a half-life of 5 days to polonium- 210
-which decays with a half-life of 5 days to polonium-210 -which decays with a half-life of 140 days to lead-206, which is a stable nuclide.

Half-life of lodine-123: 13.3 hours

What is the equation of the graph?

$$
A(t)=a b^{t}+k
$$

1) horizontal asymptote
2) y-intercept
3) "Nice" $x-y$ pair

$$
A(t)=100(0.9492)^{t}
$$

How much of the original 100 grams would be left after 30 hours?

$$
\begin{gathered}
A(30)=? \\
A(30)=100(0.9492)^{(30)} \\
A(30)=20.9 \mathrm{gms}
\end{gathered}
$$

