## Math-2 <br> Lesson 9-3

Exponential Function

The "Parent" Exponential Function

$$
y=b_{\text {base }}^{x} \text { exponent }
$$

$y=2^{x}$ (base 2 exponential function)
$y=3^{x}$ (base 3 exponential function)
$y=\left(\frac{1}{2}\right)^{\mathrm{x}}$ (base $1 / 2$ exponential function)
The base MUST BE positive and CANNOT equal 1.

$$
b=(0,1) \cup(1, \infty)
$$

## Exponential Function $f(x)=2^{x}$

Will the ' $y$ ' value ever reach zero (on the left end of the graph)?
As the denominator gets bigger and bigger, the decimal version of the fraction gets smaller and smaller.

| x | $2^{()}$ | y | 'y' gets closer and closer to <br> zero but never reaches zero. |  |
| :---: | :---: | :---: | :--- | :---: |
| -1 | $2^{(-1)}$ | $1 / 2$ | $f(-1)=1 / 2$ |  |
| -2 | $2^{(-2)}$ | $1 / 4$ | $f(-2)=1 / 4$ |  |
| -3 | $2^{(-3)}$ | $1 / 8$ | $f(-3)=1 / 8$ |  |
| -4 | $2^{(-4)}$ | $1 / 16$ | $f(-4)=1 / 16$ |  |
| -5 | $2^{(-5)}$ | $1 / 32$ | $f(-5)=1 / 32$ |  |



Exponential Growth: the graph is increasing. Growth occurs when the base of the exponential is greater than 1.

$$
f(0)=2^{0}=1
$$

Exponential Decay: the graph is decreasing. decay occurs when the base of the exponential is between 0 and 1



$$
\underset{\rightarrow \text { Reflection across the y-axis }}{g(x)=2^{x}} \quad\left(\frac{1}{2}\right)^{x}
$$

$$
\begin{aligned}
& \rightarrow \text { Reflection across the y-axis } \\
& \text { If }(3,2) \text { is reflected across the }
\end{aligned}
$$

$$
y \text {-axis, where would it be? }
$$

$\rightarrow$ Replacing ' $x$ ' with '(-x)' causes a reflection across the $y$-axis

$f(x)=2^{-x}$
$f(x)=\left(2^{-1}\right)^{x}$
Exponent of a Power
Property of Exponents
$f(x)=\left(\frac{1}{2}\right)^{x}$
Negative Exponent Property






