Math-2

Lesson 9-2

Function Composition

1. Is the following relation a function?

$$
(-2,5),(5,6),(-2,6),(7,6)
$$

No. Input value -2 has two output values.
2. Is the following relation a function?

Does the graph of the relation pass the "vertical line test" ? Yes. Each input value has exactly one output value.

Function Notation

$$
\begin{gathered}
y=f(x) \quad \text { " } y \text { is a function of } x \text { " } \\
\text { ' } y \text { ' equals ' } f \text { ' of ' } x \text { ' }
\end{gathered}
$$

A function is a rule that matches input values to out put values.

$$
f(x)=2 x+1
$$

(Input)	(rule)	(output)	
x	$2 x+1$	y	$f(2)=5$
2	$2(2)+1$	5	
3	$2(3)+1$	7	$f(3)=7$

Compositions of Functions

$$
f(x)=2 x \quad \rightarrow f(3)=?
$$

Means: wherever you see an ' x ' in the function, replace it with a 3 .

1. Replace the ' x ' with a set of parentheses.

$$
f(3)=2()
$$

2. Put the input value ' 3 ' into the parentheses.

$$
f(3)=2(3)
$$

3. Find the output value.

$$
f(3)=6
$$

Compositions of Functions

$f(x)=x^{2}-3 x+2 \rightarrow \mathrm{f}(2)=?$
Means: wherever you see an ' x ' in the function, replace it with a ' 2 '.

1. Replace the ' x ' with a set of parentheses.

$$
f(x)=()^{2}-3()+2
$$

2. Put the input value ' 2 ' into the parentheses.

$$
f(x)=(2)^{2}-3(2)+2
$$

3. Find the output value.

$$
\begin{aligned}
& f(x)=x^{3}-1 \quad f(-2)=? \\
& f(-2)=(-2)^{3}-1 \quad f(-2)=-9
\end{aligned}
$$

$$
f(x)=2 x^{1 / 2} \quad f(9)=?
$$

$$
f(9)=2(9)^{\frac{1}{2}} \quad f(9)=6
$$

$$
f(x)=\frac{2(x-4)}{x^{2}+x-20} \quad f(-2)=?
$$

$$
f(-2)=\frac{2(-2-4)}{\left((-2)^{2}+(-2)-20\right)} \quad f(-2)=\frac{2}{3}
$$

$f(2)=0$
Cool, we found a
zero of the function.

Function Notation

If your input is an expression instead of a number: replace ' x ' with parentheses and "plug in" the expression \rightarrow parentheses, substitute, simplify
$\begin{array}{ll}\text { Your turn: } \\ \text { input the expressions }\end{array} f(x)=x^{2}+1$

$$
\begin{aligned}
& f(2)=? \quad=5 \\
& f\left(x^{3}\right)=?=x^{6}+1 \\
& f(x+2)=?=(x+2)^{2}+1=x^{2}+4 x+5 \\
& f(-2 x+3)=?=(-2 x+3)^{2}+1 \\
& \quad=4 x^{2}-12 x+10
\end{aligned}
$$

Compositions of Functions

Compositions of Functions
$f(x)=2 x+3$ and $g(x)=x$
$f(g(x))=$?

1. The input value to $f(x)$ is $g(x)$
$f(.)=.2(.)+$.
2. Replace the ' x ' in $f(x)$ with a set of parentheses.
$f\left(x^{2}\right)=2\left(x^{2}\right)+3$
3. Put the input value $(g(x))$ into the parentheses.
$f(g(x))=2 x^{2}+3$
4. Find the output value.

Function "composition"

$$
f(x)=x^{2}+1 \quad g(x)=x^{2}
$$

$$
f(2)=? \quad \text { What does this mean? }
$$

"Substitute ' 2 ' in for ' x ' in the function $f(x)$."

$f(g(x))=$? What does this mean?

"Substitute ' $\mathrm{g}(\mathrm{x})$ ' in for ' x ' in the function $\mathrm{f}(\mathrm{x})$." $f(g(x))=(g(x))^{2}+1$
"Which means the same as..."

$$
f\left(x^{2}\right)=\left(x^{2}\right)^{2}+1=x^{4}+1
$$

$$
\begin{aligned}
& \text { Composition of Functions } \\
& \begin{array}{l}
\mathrm{f}(\mathrm{x})=2 \mathrm{x}+1 \quad \mathrm{~g}(\mathrm{x})=3 \mathrm{x}+2 \quad \mathrm{~h}(\mathrm{x})=\mathrm{x}+5 \\
f(g(x))=?=2(\quad)+1=2(3 \mathrm{x}+2)+1 \\
h(g(x))=? \quad=(\quad)+5=(3 \mathrm{x}+2)+5 \\
h(f(x))=? \quad=(\quad)+5=(2 x+1)+5 \\
g(h(x))=? \quad=3(\quad)+2=3(\mathrm{x}+5)+2 \\
f(f(x))=?=2(\quad)+1=2(2 \mathrm{x}+1)+1
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { New Notation for the Composition of Functions } \\
& \quad(f \circ g)(x)=f(g(x)) \text { "g" plugged into rule "f" } \\
& \quad f(x)=4 x-1 \quad g(x)=-5 x+3 \\
& (f \circ g)(x)=? \quad=4(\quad)-1=4(-5 x+3)-1 \\
& \text { " } g \text { " plugged into rule "f" } \quad(f \circ g)(x)=-20 x+11 \\
& (g \circ f)(x)=?=-5(\quad)+3=-5(4 x-1)+3 \\
& \text { " } f \text { " plugged into rule "g" } \\
& (g \circ f)(x)=-20 x+8
\end{aligned}
$$

One more layer!
$f(g(4))$
$g(x)=3 x \quad g(x)=x^{2}$
$g(4)=(4)^{2}$
$f(g(x))=3(g(x))=3 x^{2}$
$f(g(4))=3(g(4))=3(4)^{2}=48$

One more layer. $\quad g(x)=x^{2} \quad f(x)=3 x$	
$(g \circ f)(-1)=?$	Rewrite in "old" notation
$g(f(-1))=?$	The input to $\mathrm{f}(\mathrm{x})$ is -1.
$f(-1)=3(-1)$	
$f(-1)=-3$	The output of $\mathrm{f}(-1)$ is -3.
$g(-3)=9$	The input to $\mathrm{g}(\mathrm{x})$ is -3.
$g(f(-1))=9$	

$$
\begin{array}{cc}
(g \circ f)(-1)=? & \text { Rewrite in "old" notation } \\
g(f(-1))=? & \text { The input to } \mathrm{f}(\mathrm{x}) \text { is }-1 . \\
f(-1)=3(-1) & \\
f(-1)=-3 & \text { The output of } \mathrm{f}(-1) \text { is }-3 . \\
g(-3)=9 & \text { The input to } \mathrm{g}(\mathrm{x}) \text { is }-3 . \\
g(f(-1))=9 &
\end{array}
$$

