

1. Is the following relation a function? (-2, 5), (5, 6), (-2, 6), (7, 6)

No. Input value -2 has two output values.

2. Is the following relation a function?

Does the graph of the relation pass the "vertical line test" ?

Yes. Each input value has exactly one output value.

<u>Compositions</u> of Functions $f(x) = 2x \rightarrow f(3) = ?$ Means: wherever you see an 'x' in the function, replace it with a 3. 1. Replace the 'x' with a set of parentheses. f(3) = 2()2. Put the input value '3' into the parentheses. f(3) = 2(3)3. Find the output value. f(3) = 6

$$f(x) = x^{3} - 1 \qquad f(-2) = ?$$

$$f(-2) = (-2)^{3} - 1 \qquad f(-2) = -9$$

$$f(x) = 2x^{\frac{1}{2}} \qquad f(9) = ?$$

$$f(9) = 2(9)^{\frac{1}{2}} \qquad f(9) = 6$$

$$f(x) = \frac{2(x-4)}{x^{2} + x - 20} \qquad f(-2) = ?$$

$$f(-2) = \frac{2(-2-4)}{((-2)^{2} + (-2) - 20)} \qquad f(-2) = \frac{2}{3}$$

f(x) = 3x - 1					
(Input) (rule) x 3x - 1		(output) f(x)			
$\frac{2}{x^2}$ $x+2$ $3-2x$	3(2) - 1 3() - 1 3() - 1 3() - 1	5 $f(2) = 5$? $f(x^2) = 3x^2 - 1$? $f(x+2) = 3x+5$? $f(3-2x) = 8-6x$			

Your turn: $f(x) = x^2 + 1$ input the expressions f(2) = ? = 5 $f(x^3) = ? = x^6 + 1$ $f(x+2) = ? = (x+2)^2 + 1 = x^2 + 4x + 5$ $f(-2x+3) = ? = (-2x+3)^2 + 1$ $= 4x^2 - 12x + 10$

Function "composition" $f(x) = x^{2} + 1 \quad g(x) = x^{2}$ $f(2) = ? \quad \text{What does this mean?}$ "Substitute '2' in for 'x' in the function f(x)." $f(g(x)) = ? \quad \text{What does this mean?}$ "Substitute 'g(x)' in for 'x' in the function f(x)." $f(g(x)) = (g(x))^{2} + 1$ "Which means the same as..." $f(x^{2}) = (x^{2})^{2} + 1 \quad = x^{4} + 1$

Composition of f(x) = 2x + 1	Functio g(x) =	ons 3x + 2	h(x) = x + 5
f(g(x)) = ?	= 2()+1 =	= 2(3x + 2) + 1
h(g(x)) = ?	= () + 5	= (3x + 2) + 5
h(f(x)) = ?	= () + 5	= (2x + 1) + 5
g(h(x)) = ?	= 3() + 2	= 3(x + 5) + 2
f(f(x)) = ? =	= 2()+1 =	= 2(2x+1)+1

One more layer!

$$f(g(4))$$

 $f(g(4))$
 $g() = ()^{2}$
 $g(4) = (4)^{2}$
 $f(16) = 3(16)$
 $f(16) = 3(16)$
 $f(16) = 3(16)$
 $f(g(x)) = 3(g(x)) = 3x^{2}$
 $f(g(4)) = 3(g(4)) = 3(4)^{2} = 48$

New Notation for the <u>Composition</u> of Functions $(f \circ g)(x) = f(g(x))$ "g" plugged into rule "f" f(x) = 4x - 1 g(x) = -5x + 3 $(f \circ g)(x) = ? = 4() - 1 = 4(-5x + 3) - 1$ "g" plugged into rule "f" $(f \circ g)(x) = -20x + 11$ $(g \circ f)(x) = ? = -5() + 3 = -5(4x - 1) + 3$ "f" plugged into rule "g" $(g \circ f)(x) = -20x + 8$ $(f \circ f)(x) = ? = 4() - 1 = 4(4x - 1) - 1$ "f" plugged into rule "f" $(f \circ f)(x) = 16x - 5$ $(g \circ g)(x) = ? = -5() + 3 = -5(-5x + 3) + 3$ "g" plugged into rule "g" $(g \circ g)(x) = 25x - 12$

One more layer.
$$g(x) = x^2$$
 $f(x) = 3x$
 $(g \circ f)(-1) =?$ Rewrite in "old" notation
 $g(f(-1)) =?$ The input to f(x) is -1.
 $f(-1) = 3(-1)$
 $f(-1) = -3$ The output of f(-1) is -3.
The input to g(x) is -3.
 $g(-3) = 9$
 $g(f(-1)) = 9$