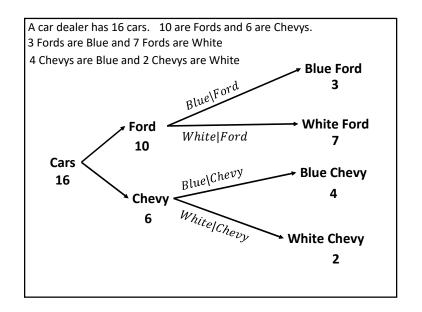
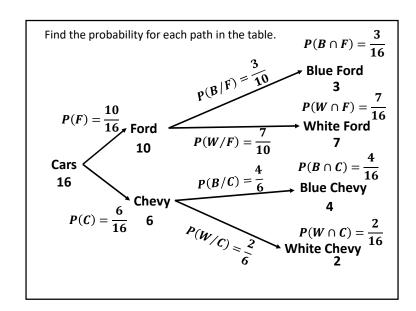
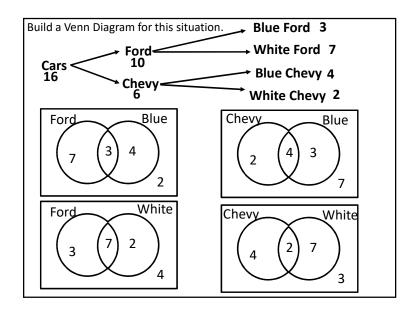
Math-2

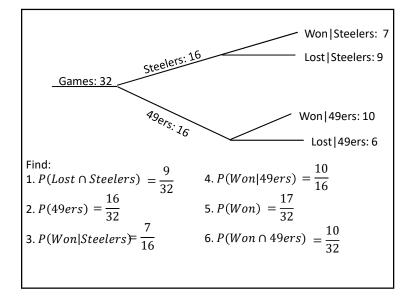
Lesson 8-8

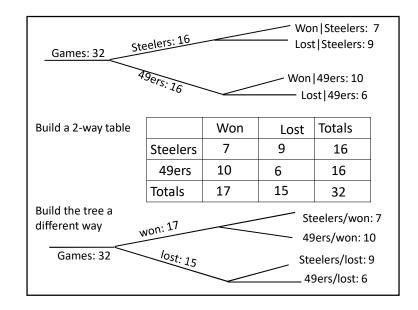

-Tree Diagrams


-Venn Diagrams

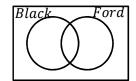

-Logical word "AND"

-Logical word "OR"


-Probability of Sequential Events



32 games were played by the Steelers and 49ers. They each played 16 games. The Steelers won 7 and lost 9. The 49ers won 10 and lost 6. Build a Tree diagram. Steeler: 16 Won/Steeler: 7 Lost/Steeler: 9 Games: 32 Won/49er: 10 Lost/49er: 6 Steeler/won: 7 Won: 17 49er/won: 10 Games: 32 Lost: 15 Steeler/lost: 9 49er/lost: 6 We can build it either way. Which way do you think is better?



Logical Words			
AND Comes up in many contexts:			
(1) Inequalities $x > 5 \text{ AND } x < 8$			
(2) 2-Way Tables $B \cap F \rightarrow Black\ AND\ Ford$			
(3) Venn Diagrams Black Ford			
AND means both conditions must be met			

Logical Words

OR Comes up in many contexts:

- x < 2 OR x > 7(1) Inequalities
- (2) 2-Way Tables $B \cup F \rightarrow Black\ OR\ Ford$
- (3) Venn Diagrams

OR means if the group meets one of the two conditions then that group is included.

Sequential Events (one event followed by another event):

(Coin toss): P(H and H)

For sequential events AND means multiply (the individual probabilities).

(Coin toss):
$$P(H \text{ and } H) = P(H) * P(H) = \frac{1}{2} * \frac{1}{2} = \frac{1}{4}$$

(Coin toss): P(H and H and T)

For sequential events AND means multiply (the individual probabilities).

(Coin toss): P(H and H and T) = P(H) * P(H) * P(T)

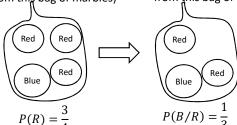
$$=\frac{1}{2}*\frac{1}{2}*\frac{1}{2}=\frac{1}{8}$$

Tossing coins → The two events are independent (determining what the second probability is does not depend upon what happened in the first event).

How many cars are Fords or Black? 3 + 8 + 4 = 15How many cars are Fords or not black? 3 + 8 + 2 = 13How many cars are not Fords or black? 4 + 2 + 3 = 9How many cars are not Fords or not black? 4 + 2 + 8 = 14

	Ford	Not Ford	Totals
Black	3	4	7
Not Black	\otimes	2	10
Totals	11	6	17

The symbol for OR is "U"

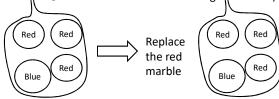

Find:
1.
$$P(Ford \cup Black) = \frac{15}{17}$$
 3. $P(F \cap \bar{B}) = \frac{8}{17}$
2. $P(\bar{F} \cup \bar{B}) = \frac{14}{17}$ 4. $P(F/B) = \frac{3}{7}$

Calculate the probability of drawing a Red marble followed by a blue marble without replacement.

The probability of the second event depends upon the first event \rightarrow since there will be one fewer red marble when we pick the second marble. We say the second is NOT independent of the 1st event.

1st event Pick a Red marble from this bag of marbles)

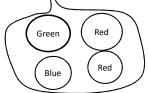
2nd event Pick a blue marble from this bag of marbles)



$$P(R \text{ and } \mathbf{B}) = P(R) * P(B/R) = \frac{3}{4} * \frac{1}{3} = \frac{1}{4}$$

Calculate the probability of picking a red marble followed by a blue marble with replacement.

1st event Pick a Red marble from this bag of marbles


2nd event Pick a blue marble from this bag of marbles)

$$P(R \text{ and } \mathbf{B}) = P(R) * P(B/R) = \frac{3}{4} * \frac{1}{4} = \frac{3}{16}$$

The second event DOES NOT depend upon the first event \rightarrow independent.

(Bag of marbles)

For probabilities <u>OR</u> means add (the individual probabilities).

$$P(R \text{ or } \mathbf{B}) = P(R) + P(B)$$

= $\frac{2}{4} + \frac{1}{4} = \frac{3}{4}$

$$P(G \cup R) = P(G) + P(R)$$

= $\frac{1}{4} + \frac{2}{4} = \frac{3}{4}$

$$P(B \cup G) = P(B) + P(G)$$

$$= \frac{1}{4} + \frac{1}{4} = \frac{2}{4}$$

$$= \frac{1}{4} * \frac{1}{3} = \frac{1}{12} \text{ W/o "rplcmnt"}$$

$$= \frac{1}{4} * \frac{1}{4} = \frac{1}{16} \text{ W/ "rplcmnt"}$$

<u>Sequential Events</u> (one event <u>followed by</u> another event):

($drawing\ cards$): $P(K\ and\ K)$ (without replacement) Are these independent events?

 $\underline{\text{NO}}$. There will be one fewer king (card) in the deck for the second event.

$$P(K \text{ and } K) = P(K) * P(K / K) = \frac{4}{52} * \frac{3}{51}$$

($drawing\ cards$): $P(Q\ and\ Q)$ (with replacement)

Are these independent events?

<u>YES</u>. There will be the same number of cards to choice from in both the 1st and 2nd events.

both the 1st and 2nd events.

$$P(Q \text{ and } Q) = P(Q) * P(Q/Q) = \frac{4}{52} * \frac{4}{52}$$

Replacement -> The two events are <u>independent</u> (determining what the second probability is does not depend upon what happened in the first event).