Math-2

8-6

Pythagorean Identity,
Tangent lines and Secant lines of circles, Non-central/inscribed angles of Circles, Dilations and Rotations on the XY Plane

$\sin \theta=y$ $\cos \theta=x \quad$ Back substitute to the triangle.

Write Pythagorean relationship for the triangle.

$$
\sin ^{2} \theta+\cos ^{2} \theta=1
$$

Find the measure of angles 1 and 2 if $m \angle 1=2 x-13$ and $m \angle 2=x$.

If a tangent to a circle intersects at the endpoint of a radius, then the angle of intersection is 90°.

Segment AC is tangent to Circle B at point C. Find BC

If a tangent to a circle intersects at the endpoint of a radius, then the angle of intersection is 90°.

Are the two triangles congruent? If so, what congruence theorem can you use to prove congruence?
Shared side is congruent
Pair of legs are radii \rightarrow congruent AAS Congruence

$-2 x+12=3+x$

$$
x=3
$$

If two chords intersect inside a circle, then the product of the lengths of the segments of one chord is equal to the product

of the lengths of the segments of the other chord.

If two secant lines cut a circle then the angle of intersection is one half of the difference between the intercepted arcs.
Two Secants
Secant and Tangent

$m \angle A=\frac{1}{2}(m D C-m B C)$ Same for a secant and a tangent line.

If 2 chords insect inside of a circle then the measure of the angle is the average of the two intercepted arcs.

$$
\begin{aligned}
& m \angle 2=\frac{1}{2}(m C D+m A B) \\
& m \angle 1=\frac{1}{2}(m B C+m A D)
\end{aligned}
$$

Do the segments that connect the points form a parallelogram?

$$
F(2,1), G(1,4), H(5,4) \text {, and } J(6,1) \quad \rightarrow \text { YES }
$$

The Hard Way

1. Find all the segment lengths (opposite sides of
parallelograms are congruent).

$$
\begin{aligned}
& G F=\sqrt{(2-1)^{2}+(1-4)^{2}}=\sqrt{1^{2}+(-3)^{2}}=\sqrt{1+9}=\sqrt{10} \\
& H J=\sqrt{(5-6)^{2}+(4-1)^{2}}=\sqrt{(-1)^{2}+3^{2}}=\sqrt{1+9}=\sqrt{10} \\
& F J=\sqrt{(6-2)^{2}+(1-1)^{2}}=\sqrt{4^{2}+0^{2}}=\sqrt{16}=4 \\
& G H=\sqrt{(5-1)^{2}+(4-4)^{2}}=\sqrt{4^{2}+0^{2}}=\sqrt{16}=4
\end{aligned}
$$

2. Find all the slopes between the points (opposite sides are parallel).

$$
\begin{array}{ll}
m_{G F}=\frac{1-4}{2-1}=\frac{-3}{1}=-3 & m_{H J}=\frac{4-1}{5-6}=\frac{3}{-1}=-3 \\
m_{F J}=\frac{1-1}{6-2}=\frac{0}{4}=0 & m_{G H}=\frac{4-4}{5-1}=\frac{0}{4}=0
\end{array}
$$

Do the segments that connect the points form a parallelogram?

$$
F(2,1), G(1,4), H(5,4) \text {, and } J(6,1) \quad \rightarrow \text { YES }
$$

The Easy Way

1. Graph the points

2. Are opposite sides congruent? YES
3. Are opposite sides parallel? YES

Dilation: a transformation that results in the same shape but a different size. It uses a center of dilation and a scale factor to create the proportional figure.

Center of Dilation: a fixed

 point in the $x-y$ plane about which all points of the figure are expanded or contracted.Center of Dilation: $(0,0)$ $\underline{\text { Scale factor }}=\frac{A^{\prime} B^{\prime}}{A B}=\frac{4}{2} \xrightarrow[2^{2}]{ }$

Rotate the shape 180° in the clockwise direction.
A: $(-8,3) \quad A^{\prime}:(8,-3) \quad$ Moves the point to the opposite quadrant of the $x-y$ plane $\rightarrow+/$ - of points change.

