Math-2

8-5
Radian Measure
and
the Measures of Arcs

$$
\begin{gathered}
\tan \theta=5 / 9 \\
\cos \theta=?
\end{gathered}
$$

Tangent ratio gives 2 sides of a right triangle.

$$
\begin{array}{rlr}
h=\sqrt{5^{2}+9^{2}} & \cos \theta=\frac{9}{\sqrt{106}} \\
h=\sqrt{25+81} & & \cos \theta=\frac{9 \sqrt{106}}{106} \\
h=\sqrt{106} &
\end{array}
$$

Why 360° ?

The idea of dividing a circle into 360 equal pieces dates back to the sexagesimal (60 -based) counting system of the ancient Sumarians. Early astronomical calculations linked the sexagesimal system to circles.
cosine ratio gives 2 sides of a right triangle.

$$
\begin{gathered}
h=\sqrt{10^{2}-3^{2}} \\
h=\sqrt{100-9} \\
h=\sqrt{91}
\end{gathered}
$$

Angles vs. arcs
If I lengthen the sides of the angle, does the measure of the angle change?

NO $7^{-}{ }^{A}$

Notice that the length of the arc depends upon how far the arc is from the vertex of the angle.

Degrees: The measure of an angle as a portion of 360° (the angle measure of a circle).

$$
90^{\circ}=1 / 4 * 360^{\circ}
$$

Radian measure: the ratio of the arc length to the distance the arc is from the vertex of the angle.

$$
\text { radian measure }=\frac{\operatorname{arc} \text { length }}{\text { radius }}
$$

Pi: an irrational number that is the ratio of the distance around the circle to the distance across the circle.

$$
\pi=\frac{C}{D} \quad \pi=\frac{C}{2 r} \quad C=2 \pi r
$$

What is the radian measure?

$$
\begin{aligned}
& 360^{\circ}=\frac{2 \pi}{2} \\
& 180^{\circ}=\frac{\pi}{\pi} \\
& 90^{\circ}=\frac{\frac{\pi}{2}}{3}
\end{aligned} \quad 30^{\circ}=\frac{\pi}{6}=\underline{\frac{\pi}{4}}
$$

Radian measure has no units! (nice)

Degree-Radian Conversion Degree-Radian Conversion

$$
180^{\circ}=\pi \text { radians }
$$

To convert radians to degrees, multiply by $\frac{180^{\circ}}{\pi \text { radians }}$.
To convert degrees to radians, multiply by $\frac{\pi \text { radians }}{180^{\circ}}$.

$$
\left(\frac{\pi}{180^{\circ}}\right) \quad \begin{gathered}
\text { These are } \\
\text { "conversion factors" }
\end{gathered} \quad\left(\frac{180^{\circ}}{\pi}\right)
$$

The ratio of these two numbers equals one.
Multiplication by "one" does not change the number. It just changes what the number looks like.

$$
\begin{aligned}
& \text { Convert between radians and degrees using a "proportion" } \\
& \qquad \begin{array}{c}
\frac{a^{\text {angle }} \text { degrees }}{} \\
\frac{7}{8} \pi \quad \frac{\text { angle } \text { radians }}{2 \pi} \\
360 \\
36 \frac{\text { angle }_{\text {degrees }}}{360}=\frac{7 / 8}{2 \pi} \\
360
\end{array} \text { angle }_{\text {degrees }} \\
& \text { angle }_{\text {degrees }}=157.5^{\circ}
\end{aligned}
$$

Converting from Degrees to Radian Measure

$$
140^{\not 又}\left(\frac{\pi}{180^{\varnothing}}\right)=\frac{140}{180} \pi=\frac{14}{18} \pi=\frac{7}{9} \pi
$$

Converting from Radian Measure to Degrees

$$
\frac{\mathscr{t}}{2}\left(\frac{180^{\circ}}{\mathscr{Z}}\right)=90^{\circ}
$$

Your Turn: Convert between radians and degrees.

$$
\begin{gathered}
\frac{11}{3} \pi=? \\
270^{\circ}=?
\end{gathered}
$$

Radian measure: the ratio of the arc length to the radius of the circle:

$$
\text { radian measure }=\frac{\operatorname{arc} \text { length }}{\text { radius }}
$$

Theta: a Greek letter. Traditionally, we use Greek letters as variables for the measure of an angle.

$$
\theta=\frac{s}{\mathrm{r}} \quad r \theta=\mathrm{s} \quad s=r \theta
$$

Problem types you'll see:

$$
\begin{aligned}
& \text { What is length of the subtended arc? } \\
& s=r \theta \quad s=5 * 3 \pi / 4 \\
& \quad s=\frac{15 \pi}{4} \text { inches }
\end{aligned}
$$

$$
\text { You cannot use: } s=r \theta
$$

Why not?
$r=5$ inches
This formula is a re-arrangement of the definition of radian measure. You cannot use degrees with this formula.

Find the length of the crust of a slice of pizza.

14 inch pizza (diameter) Slice is $1 / 8$ of the pizza
$\frac{\text { part }}{\text { whole }_{\text {(arclengths) }}}=\frac{\text { part }}{\text { whole }_{\text {(angles) }}} \quad \frac{s}{2 \pi r}=\frac{1}{8} * 360^{\circ}$

$$
\frac{s}{2 \pi r}=2 * * \pi * 7 * \frac{1}{8} * 360^{\circ}
$$

Find the area of the crust of a slice of pizza.
14 inch pizza (diameter) Slice is $1 / 8$ of the pizza

$$
\begin{aligned}
A & =\frac{1}{8} * \pi * r^{2} \\
A & =\frac{1}{8} * \pi * 7^{2} \\
A & =\frac{49}{8} \pi i n^{2}
\end{aligned}
$$

