Math-2 8-5

Radian Measure and the Measures of Arcs

$$\tan \theta = \frac{5}{9}$$

$$\cos \theta = ?$$
5

h
9

Tangent ratio gives 2 sides of a right triangle.

$$h = \sqrt{5^2 + 9^2} \qquad \cos \theta = \frac{9}{\sqrt{106}}$$

$$h = \sqrt{25 + 81} \qquad \cos \theta = \frac{9\sqrt{106}}{106}$$

$$h = \sqrt{106} \qquad \cos \theta = \frac{9\sqrt{106}}{106}$$

$$\cos \theta = \frac{3}{10} \qquad \text{opp}$$

$$\sin \theta = ?$$

cosine ratio gives 2 sides of a right triangle.

$$h = \sqrt{10^2 - 3^2}$$

$$h = \sqrt{100 - 9}$$

$$h = \sqrt{91}$$

$$h = \sqrt{91}$$

Why 360°?

The idea of dividing a circle into 360 equal pieces dates back to the <u>sexagesimal (60-based)</u> counting system of the ancient Sumarians. Early astronomical calculations linked the sexagesimal system to circles.

Notice that the <u>length of the arc</u> depends upon <u>how far</u> the arc is from the vertex of the angle.

radian measure = $\frac{arc \text{ length}}{\text{radius}}$

Radian measure for a complete circle.

radian measure of a circle $=\frac{circumference}{radius}$

radian measure of a circle = $\frac{2\pi x}{x}$

radian measure of a circle = 2π radians

Units of radians = inches/inches

Radian measure has <u>no units!</u> (nice)

<u>Degrees</u>: The measure of an angle as a portion of 360° (the angle measure of a circle).

$$90^{\circ} = \frac{1}{4} * 360^{\circ}$$

Radian measure: the ratio of the arc length to the distance the arc is from the vertex of the angle.

radian measure =
$$\frac{arc \text{ length}}{\text{radius}}$$

<u>Pi</u>: an <u>irrational number</u> that is the ratio of the distance <u>around</u> the circle to the distance <u>across</u> the circle.

$$\pi = \frac{C}{D}$$
 $\pi = \frac{C}{2r}$ $C = 2\pi r$

What is the radian measure?

$$360^{\circ} = \frac{2\pi}{1}$$

$$180^{\circ} = \frac{\pi}{2}$$

$$90^{\circ} = \frac{\frac{\pi}{2}}{2}$$

$$30^{\circ} = \frac{\frac{\pi}{6}}{2}$$

$$45^{\circ} = \frac{\pi}{4}$$

Degree-Radian Conversion Degree-Radian Conversion

$$180^{\circ} = \pi \text{ radians}$$

To convert radians to degrees, multiply by $\frac{180^{\circ}}{\pi \text{ radians}}$.

To convert degrees to radians, multiply by $\frac{\pi \text{ radians}}{180^{\circ}}$

$$\left(\frac{\pi}{180^{\circ}}\right)$$
 These are "conversion factors" $\left(\frac{180^{\circ}}{\pi}\right)$

The ratio of these two numbers equals one.

Multiplication by "one" does not change the number. It just changes what the number looks like.

Converting from Degrees to Radian Measure

140%
$$\left(\frac{\pi}{180^{\circ}}\right) = \frac{140}{180}\pi = \frac{14}{18}\pi = \frac{7}{9}\pi$$

Converting from Radian Measure to Degrees

$$\frac{\cancel{t}}{2} \left(\frac{180^{\circ}}{\cancel{t}} \right) = 90^{\circ}$$

Convert between radians and degrees using a "proportion".

$$\frac{angle_{degrees}}{360} = \frac{angle_{radians}}{2\pi}$$

$$\frac{7}{8}\pi \qquad \frac{angle_{degrees}}{360} = \frac{7/8\pi}{2\pi}$$

$$360 * \frac{angle_{degrees}}{360} = 0.4375 * 360$$

$$angle_{degrees} = 157.5^{\circ}$$

Your Turn: Convert between radians and degrees.

$$\frac{11}{3}\pi = ?$$

$$270^{\circ} = ?$$

Radian measure: the ratio of the arc length to the radius of the circle:

radian measure =
$$\frac{arc \text{ length}}{\text{radius}}$$

Theta: a Greek letter. Traditionally, we use Greek letters as variables for the measure of an angle.

$$\theta = \frac{s}{r}$$
 $r\theta = s$ $s = r\theta$

$$r\theta = s$$

$$s = r\theta$$

Solving "subtended arc" problems: (1) use a proportion OR (2) convert the angle measure to radians and use the formula.

$$\boxed{\frac{part}{whole_{(arclengths)}} = \frac{part}{whole_{(angles)}}}$$

$$\frac{s}{2*\pi*r} = \frac{\theta}{360 \text{ or } 2\pi}$$

 $\frac{\text{arc of the sector}}{\text{total arc of the circle}} = \frac{\text{angle of the sector}}{\text{total angle of the circle}} \frac{\text{s}}{2 \text{ m/s}} = \frac{3\pi/4}{2\pi}$

$$s = \frac{5*3}{4}\pi \qquad s = \frac{15\pi}{4} \text{ in}$$

We want our answers in reduced fraction form, with (Pi) π in the answer. Problem types you'll see: What is length of the subtended arc?

 $s = r\theta$ $s = 5*3\pi/4$ $s = \frac{15\pi}{4}$ inches

You cannot use: $|s = r\theta|$ Why not? This formula is a re-arrangement of

the definition of radian measure. You cannot use degrees with this formula.

Find the length of the crust of a slice of pizza.

14 inch pizza (diameter) Slice is 1/8 of the pizza

$$\frac{\text{part}}{\text{whole}_{(\text{arclengths})}} = \frac{\text{part}}{\text{whole}_{(\text{angles})}} \qquad \frac{s}{2\pi r} = \frac{1}{8} * 360^{\circ}$$

$$\frac{s}{2\pi r} = \frac{1}{8} * 360^{\circ}$$

$$\frac{s}{2\pi r} = 2 * *\pi * 7 * \frac{1}{8} * 360^{o}$$

Find the area of the crust of a slice of pizza.

14 inch pizza (diameter) Slice is 1/8 of the pizza

$$A = \frac{1}{8} * \pi * r^2$$

$$A = \frac{1}{8} * \pi * 7^2$$
$$A = \frac{49}{8} \pi i n^2$$

$$A = \frac{49}{8}\pi \ in^{3}$$