Math-2
Lesson 8-3:
Surface Area of:
Circles, Spheres, Cylinders, Cones, Pyramids, and Prisms

Describe the idea of area
Area attempts to answer the question "how big is it?"

The area of this square is....?
area $=$ length * width
area $=(1 \mathrm{inch})(1 \mathrm{inch})$
area $=1$ inch 2
area $=1$ "square inch"

$$
\begin{array}{cc}
\pi=\frac{\text { distance around the circle }}{\text { distance across the circle }} & \pi=\frac{\text { Circumfere nce }}{\text { diameter }} \\
\pi=\frac{\text { Circumfere nce }}{2 \text { radii }} & \pi=\frac{\mathrm{C}}{\mathrm{D}} \\
\pi=\frac{\mathrm{C}}{2 \mathrm{r}} \quad \mathrm{C}=2 \pi r & \mathrm{C}=\pi D
\end{array}
$$

The area of this circle is....? \quad area $=\pi \mathrm{r}^{2}$
What is the area of the circle given by the equation?
$\int 16=x^{2}+(y+2)^{2}$
area $=16 \pi$

If the problem says to use 3.14 for "pi", DO NOT use the pi button on your calculator; use 3.14

$$
\begin{aligned}
& \text { The area of this circle is....? } \\
& \mathrm{A}=\pi \mathrm{r}^{2} \\
& \text { Is the given dimension a radius? } \\
& \text { area }=\pi\left(\frac{2.7}{2}\right)^{2}=5.73 \mathrm{in}^{2}
\end{aligned}
$$

If decimal dimensions are given in the problem, it is OK to have a decimal answer.

Base (of a triangle): any side of the triangle.
height (of a triangle): the perpendicular distance (altitude) from any vertex of the triangle to its opposite side.
The area of this triangle is....?

$$
\mathrm{A}_{\Delta}=\frac{1}{2} * \text { base } * \text { height }
$$

Find the triangle area. (Use the altitude from point B as its height.)

Prism: a three-dimensional shape (a "solid") that has two parallel polygonal bases and planer ("flat") sides.

Prisms are named based upon the shape of their bases

If the sides intersect the base at a right angle, we include that in the name:

What is the name of the prism to the left?
"Right Triangular Prism"

The surface area of a sphere is....?
surfarea sphere $=4 \pi \mathrm{r}^{2}$
surface area $_{\text {sphere }}=4 \pi\left(\frac{6}{2}\right)^{2}$
surface $_{\text {sphere }}=4 \pi(3)^{2}$
surface area area $_{\text {sphere }}=4 \pi * 9$
sphere
$=36 \pi$ in $^{2}=113.1 \mathrm{in}^{2}$

