Math-2
 Lesson 8-2

Exterior Angle Theorem, Arcs, Central Angles, and Inscribed Angles in Circles

Exterior angle: An angle formed by one side of a triangle and the extension of the adjacent side of the triangle.

Angle " E " is an exterior angle to triangle $A B C$.

Remote interior angle: The two angles of a triangle that are on opposite sides of the triangle from the exterior angle.

Angles " A " and " B " are "remote interior" angles to exterior angle " E ".

The "exterior angle" theorem

$m \angle A+m \angle B+m \angle C=180$	"Triangle sumtheorem"
$m \angle C+m \angle E=180$	"Linear Pairs"
$m \angle A+m \angle B+m \angle C=m \angle C+m \angle E$	"substitution"
$m \angle A+m \angle B=m \angle E$	Property of equality (subtractm $\angle C$ fromleft/right)

The measureof an exterior angle
equals the sum of the remoteinterior angles. QED

Triangle ABC is Isosceles. The measure of exterior angle- E is
100. Find the measure of angle A.

Inscribed angle: has its vertex on the circle

Central angle: has its vertex at the center of the circle.

Naming Arcs

The arc subtended by Center Angle C is $\overparen{B D}$

Spoken: "arc BD" $m B D$

Spoken: "the measure of arc BD"

Intercepted arc: the arc of the circle that is in the interior of the angle. It has the same degree-measure as the central angle.

Minor Arcs: arcs that are less than half the circle.

Major Arcs: arcs that are more than half the circle.
To distinguish between minor $\operatorname{arc} \mathrm{BD}$ and major $\operatorname{arc} \mathrm{BD}$, we could add a letter between ' B ' and ' D ' to indicate a point in between that the arc passes through.

The "Central" Angle and the "inscribed" angle intercept ("cut") the same arc.

Which angle has the larger measure?

Inscribed/Center Angle/Inscribed Arc Theorem
If an inscribed angle subtends an arc, then the measure of the inscribed angle equals half the measure of the central angle (or subtended arc).

Inscribed/Center Angle/Inscribed Arc Theorem
If an inscribed angle and a central angle subtend the same arc, then the measure of the central angle equals twice the measure of the inscribed angle.

If a central angle subtends an arc, then the measure of the arc
equals twice the measure of the inscribed angle.

Find the measure of the angle.
To solve for an unknown value, you need an equation

1. Inscribed Angle. \rightarrow Inscribed/Central Angle/Inscribed Arc Thm.
$m \angle L=$? $\quad 2 m \angle L=m \widehat{N M} \quad m \angle L=0.5 * 102^{\circ}$

$$
m \angle L=51
$$

1. Triangle \rightarrow Triangle Sum Theorem

A useful result of inscribed angles that cut "opposite" arcs. Inscribed angles that "cut opposite arcs are supplementary (add up to 180).

A useful result of an inscribed angle that cuts a diameter Segment QG is a diameter of circle C
$\overparen{m F Q H}=?=180^{\circ}$

An inscribed angle that "cuts a diameter" always has a measure of 90 .

To solve for an unknown value, you need an \qquad _.

1. Inscribed Angle. \rightarrow Inscribed/Central Angle/Inscribed Arc Theorem

