Math-2

Lesson 7-6

Solving Right Triangles Using Trigonometric Ratios

Using Angle A as the "reference" angle, we need a name for the other leg of the right triangle.
opposite
leg.

Accuracy of measurements.

The smallest distance between each "tic mark" on the ruler is 0.1 cm (or 1 mm).

A length either falls on a tic mark, or between a tic mark.

When proving Triangle Similarity, we compared the lengths of corresponding sides between two different triangles.

Group Activity: Each of you has a 30-60-90 triangle. There are three different sizes of triangles. All three triangles are similar by the AA Similarity Theorem.

1. To the nearest 0.1 centimeter, measure lengths: $B C, A C$, and $A B$ (write these lengths on your triangles.
2. Calculate and write the value of the ratios (in order), BC/AB, AC/AB, and BC/AC.
3. Bring your results to me.

Conclusion: the size of the triangle DOES NOT MATTER-the ratio of the opposite side of a 30° angle to the hypotenuse of a 30-60-90 right triangle will always be the same number.

The $\frac{\text { opposite }}{\text { hypotenuse }}$ ratio is called the sine ratio.

$$
\frac{B C_{3}}{A B_{3}}=\frac{o p p_{30}}{h y p_{30}}=\frac{5.75}{11.55}=0.50
$$

Another way to say $\frac{o p p_{30}}{h y p_{30}}$
Is $\sin 30=\frac{o p p_{30}}{h y p_{30}}$
This ratio will work for any measure of acute
angle in a right triangle!
Using Angle A as our reference angle,
in general we say:
"The sine ratio (for reference angle A) is the length of the leg opposite of angle A divided by the length of the hypotenuse".

$$
\cos A=\frac{a d j}{h y p}
$$

"The cosine ratio (for reference angle A) is the length of the leg adjacent to angle A divided by the length of the hypotenuse."
"The tangent ratio (for reference angle A) is the length of the leg opposite to angle A divided by the length of the leg adjacent to angle A."

The ratio is a property of the angle. We must know which of the two acute angles we are referring to in order to find the correct ratio.

$\sin \theta=\frac{o}{h}$
The easy way to remember what sides of the triangle to use in ratios.
$\cos \theta=\frac{a}{h}$
$\tan \theta=\frac{o}{a}$
These ratios only work for right triangles!!!

Sine Ratio

What is the sine ratio of angle A?
$\sin A=\frac{o p p}{h y p}$

Sine ratio of angle A is $\frac{3}{5} \quad \sin A=\frac{3}{5}$
Cosine Ratio What is the cosine ratio for angle A?
$\cos A=\frac{a d j}{h y p} \quad$ Cosine ratio for angle A is $\quad \frac{4}{5}$
$\cos A=\frac{4}{5}$

$$
\begin{aligned}
& \text { What is the sine } \\
& \text { ratio of angle A? } \\
& \sin A=\frac{o p p}{h y p} \\
& \sin A=\frac{x}{7}
\end{aligned}
$$

How do we find the value represented by ' x '?

IF (right triangle) THEN

$$
a^{2}+b^{2}=c^{2}
$$

$$
7^{2}+x^{2}=8^{2}
$$

$\cos A=\frac{\sqrt{15}}{8}$

$$
\begin{aligned}
& x^{2}=8^{2}-7^{2} \\
& x=\sqrt{64-49}
\end{aligned}
$$

$$
x=\sqrt{15}
$$

Solve a triangle: to find the measure of the unknown angles and side lengths.
To find an unknown value you need an equation!
There are five equations that relate to right triangles. IF (right triangle) THEN

1) $a^{2}+b^{2}=c^{2}$
2) $\sin A=\frac{o}{h}$
3) $\cos A=\frac{a}{h}$ and IF (any triangle) THEN
4) $\tan A=\frac{o}{a}$
"Solve the triangle" (find the missing side and angle measures)
5) $a^{2}+b^{2}=c^{2}$
6) $\sin A=\frac{o}{h}$
7) $\cos A=\frac{a}{h}$

8) $\tan A=\frac{o}{a}$
9) $m \angle A+m \angle B+M \angle C=180^{\circ} \rightarrow m \angle B=52^{\circ}$

Solve the triangle.

1) $a^{2}+b^{2}=c^{2} \rightarrow$
2) $\begin{aligned} & \sin A=\frac{o}{h}(a d j)^{2}+(3.08)^{2}=5^{2} \\ &(a d j)^{2}+9.49=25\end{aligned}$
3) $\cos A=\frac{a}{h} \quad(a d j)^{2}=25-9.49$
o $\quad(a d j)^{2}=15.51$
4) $\tan A=\frac{o}{a}$
$a d j=\sqrt{15.51}=3.94$
5) $m \angle A+m \angle B+M \angle C=180^{\circ}$

Solve the triangle. 1) $a^{2}+b^{2}=c^{2}$ 2) $\sin A=\frac{o}{h}$ 3) $\cos A=\frac{a}{h} \rightarrow \cos 38^{\circ}=\frac{a d j}{5}$ $0.788=\frac{a d j}{5}$ 4) $\tan A=\frac{o}{a}$ $5(0.788)=\text { adj }=3.94$ 5) $m \angle A+m \angle B+M \angle C=180^{\circ}$	

Usually, the problem only
asks you to solve for ' x^{\prime}

1) $a^{2}+b^{2}=c^{2}$
2) $\sin A=\frac{o}{h} \rightarrow \sin 29^{\circ}=\frac{x}{8}$
3) $\cos A=\frac{a}{h} \quad 0.485=\frac{x}{8}$
4) $\tan A=\frac{o}{a} \quad 8(0.485)=\mathrm{opp}$
5) $m \angle A+m \angle B+M \angle C=180^{\circ}$

$$
\begin{aligned}
& \text { The Hardest problem } \\
& \begin{array}{c}
\sin A=\frac{o}{h} \quad \sin 65^{\circ}=\frac{6}{x} \\
0.906=\frac{6}{x} \quad \text { ' } x \text { ' is in the denominator! } \\
x(0.906)=6 \quad \text { "undo" division by ' } x \text { ' } \\
x=\frac{6}{0.906}=6.6
\end{array}
\end{aligned}
$$

