SM2 HANDOUT 7-4 (Properties of Parallelograms and Isosceles Triangles

Parallelogram Properties :

1. Opposite Angles are congruent.

$$
\begin{aligned}
& m \angle A=m \angle C \\
& m \angle B=m \angle D
\end{aligned}
$$

2. Consecutive Interior Angles are supplementary.

$$
m \angle A+m \angle B=180
$$

Math Problems from "Opposite Angles of Parallelograms are Congruent"

Math Problems from "Adjacent Angles of Parallelograms are Supplementary"

Segment AC is a diagonal.
$\angle B C A \cong \angle D A C$ Alternate Interior Angles
$m \angle C A D+m \angle D C A+m \angle D=180 \quad$ Triangle Angle Sum Theorem (we'll

$$
3 \mathrm{x}-1+2 x+6+150=180
$$

$$
5 x+155=180 \quad x=5
$$

If we could prove the diagonal forms two congruent triangles, we could use CPCTC to prove more properties of Parallelograms.

$$
m \angle A=m \angle C
$$

 Opposite Angles are congruent.

$$
\angle 1 \cong \angle 2
$$

Alternate Interior Angles

$$
B D=D B
$$

Same segment \rightarrow same length
$A D=B C \quad$ СРСТС
$A B=C D \quad$ СРСТС
$\triangle A B C \cong \triangle C D B$
AAS Theorem

Math Problems from "Opposite Sides of Parallelograms are congruent"

$A B=?$

Math Problems from "Diagonals of Parallelograms BISECT each other."

2. Write an equation that relates the lengths in the problem.

$$
\begin{array}{r}
2 * A M=A C \\
2(3 x-5)=26
\end{array}
$$

$$
\text { 3. Solve for ' } x \text { '. } 3 x-5=13
$$

$$
3 x=18
$$

$$
x=6
$$

Segment Bisector: if a line segment is intersected by a ray, segment or line at the midpoint of the segment, then the ray, segment line is a segment bisector.
a) Another segment
b) A ray
c) A line.

Parallelogram Properties :

1. Opposite Angles are congruent. $m \angle 3=m \angle 4$
2. Consecutive Interior Angles are supplementary. $m \angle 1+m \angle 2+m \angle 3=180$

B 3. A diagonal of a parallelogram forms two congruent triangles. $\triangle D A B \cong \triangle C B D$
4. Opposite Sides of parallelograms are congruent. $A B=C D$
5. Opposite triangles formed by the diagonals (plural) form congruent triangles.
$\triangle A M D \cong \triangle C M B$
6. Diagonals of parallelograms bisect each other.

$$
A M=M C \quad A C=2 * M C
$$

$\overline{E F}$ is a perpendicular bisector of $\overline{A B}$.
Are there any equations (that come from congruencies) that we can write from this result?

Math Problems from "Perpendicular Bisectors"

2. Write an equation that relates the lengths in the problem. $2 * A M=A C$
3. Solve for ' x '

Angle Bisector: a common side of two adjacent angles that divides the angle into two angles of equal measure.

If $\mathrm{m} \angle 1=m \angle 2$

THEN $\overline{B C}$ is an angle bisector of. $\angle A B D$

Are there any equations that we can write from this result?
$\mathrm{m} \angle A B C=m \angle D B C$
angle bisector
$\mathrm{m} \angle A B D=2 * m \angle D B C$
angle bisector

Isosceles Triangle: A triangle with two congruent sides.

Legs: (Of an Isosceles Triangle) The two congruent sides.
Vertex Angle: (Of an Isosceles Triangle) The included angle of the legs.

Base: (Of an Isosceles Triangle) The opposite the vertex angle.
Base Angles: (Of an Isosceles Triangle) The angles that include the base.

Given: $\triangle A B C$ is an Isosceles Triangle and $\overline{A M}$ is an angle bisector of vertex angle A .
Prove that an angle bisector of an Isosceles Triangle forms two congruent triangles.

$$
\Delta C A M \cong \triangle B A M
$$

Congruent triangles give us SIX Pairs of congruencies.

$$
C M=B M
$$

$$
m \angle C M A=m \angle B M A
$$

$$
m \angle A C M=m \angle A B M
$$

Properties of Isosceles Triangles

1. The vertex and bisector forms two $\triangle C A M \cong \triangle B A M$ congruent triangles.
2. The vertex angle bisector is a
perpendicular bisector of the base

$$
m \angle C M A=m \angle B M A=90
$$

$$
C M=B M
$$

3. Base Angles are congruent. $m \angle A C M=m \angle A B M$

Triangle Sum Theorem: If $\angle A, \angle B$, and $\angle C$ are the interior angles of a triangle, then their measures add up to 180°.

Math Problems from "The Triangle Sum Theorem."

1. Write an equation that relates the measures of the angles.

$$
m \angle A+m \angle B+m \angle C=180^{\circ}
$$

2. Substitute the measures of the angles into the equation.
3. Solve for ' x '.
\qquad

Constructing a Perpendicular Bisector
Given a line segment $A B$

1) Using a compass draw two arcs of equal radius using the endpoints as the center of each are.
2) Construct a point where ${ }^{\text {A }}$ the two arcs intersect.
3) Construct a line through these two points.
4) $\overline{E F}$ is the perpendicular bisector of $\overline{A B}$

Constructing an Angle Bisector

Given $\angle B$

1) Using a compass draw an arc
using point B as the center.
2) Construct two points (points A and C) where the arc intersects the side of the angles
3) Construct $\overline{A C}$
4) Construct a
perpendicular bisector of $\overline{A C}$
5) $\overline{B M}$ is the angle bisector of
$\angle A B C$

$$
2
$$

