SM2 HANDOUT 7-3 (Special Angle Pairs)

Supplementary Angles are any two angles whose measures add up to 180 .

Complementary Angles are any two angles whose measures add up to 90 .

Vertical Angle Pair: angles formed by two crossing lines and have no common sides.
$\angle 2$ and $\angle 4$ are a vertical angle pair Are there any other vertical angle pairs?

In the crossed-lines figure above, name 4 linear pairs of angles.

Adjacent Angles have a common side and share a common vertex

Angle Addition Postulate
If $\angle A B C$ is adjacent to $\angle \mathrm{CBD}$ then $\mathrm{m} \angle A B C+\mathrm{m} \angle \mathrm{CBD}=\mathrm{m} \angle A B D$ or
If $\angle 1$ is adjacent to $\angle 2$ then $\mathrm{m} \angle 1+\mathrm{m} \angle 2=\mathrm{m} \angle A B D$

A Two-Column Proof is a logical argument written so that the
1 st column contains a statement and the
2nd column provides a justification for the truthfulness of the statement.

Statement	Justification (reason)

A drawing is NOT a proof!!!

Prove the Linear Pair Theorem: (If two angles form a linear pair, then the sum of their measures is 180 degrees.)	
Statement	Justification (reason)
(1) $\angle 1$ and $\angle 2$ are a linear pair	Hypothesis to be proven
(2) $\angle 1$ and $\angle 2$ are adjacent angles	Definition of a linear pair
(3) $\angle \mathrm{ABD}$ is a straight angle	Definition of a linear pair
(4) $m \angle \mathrm{ABD}=185$	Definition of a straight angle
(5) $m \angle 1+\angle 2=\mathrm{m} \angle \mathrm{ABD}=180$	Steps 3, 4, 5 and Angle Addition Postulate
6) The sum of the measures of linear pairs is 180 degrees	Quad Erat Demonstrandum
	Linear Pair of angles is made up of two "adjacent angles" whose un-shared sides form a straight angle.

Use the Linear Pair Theorem to prove that vertical angles are congruent. Statement			
$m \angle 1+\mathrm{m} \angle 2=180$	Justification (reason)		
$m \angle \ldots+\mathrm{m} \angle 3=180$	Linear Pair Theorem		
$m \angle \ldots+\mathrm{m} \angle \ldots=\mathrm{m} \angle \ldots+m \angle$	Linear Pair Theorem		
$m \angle \ldots=m \angle$	substituti on (steps 1 and 2)		
$\angle 1$ and $\angle 3$ are vertical angles.	Property of _equality		
V ertical angles are congruent.	QED of vertical angles		

Linear Pair Theorem: If two angles form a linear pair, then the sum of their measures is 180 degrees.)

Vertical Angle Theorem: If two angles are vertical angles then the two angles are congruent.

Transversal line: A line that intersects two other lines (usually parallel lines).

Corresponding Angles: pairs of angles that are in the same relative position

Alternate Exterior Angles: pairs of angles that are outside the parallel lines and on alternate sides of the transversal.

Alternate Interior Angles: pairs of angles that are in between the paralle lines and on alternate sides of the transversal.

Consecutive Interior Angles: pairs of angles that are in between the parallel lines and are on same side of the transversal.

$$
\angle 3, \angle 6
$$

Name the one other consecutive interior angle pair.

Corresponding Angles Postulate: If two parallel lines are cut by a transversal, then Corresponding angles are congruent.

$$
m \angle 1=m \angle 5
$$

The two red lines are parallel. Find the measures of all the other angles and give the theorem that justifies your answer.

The two red lines are parallel, what can you say about ...

One pair of parallel lines

Use a difference sequence of angle congruences to prove: $m \angle 1=m \angle 11$

Write a congruence statement and provide a justification for each.

