

What is a...?	Match the symbol with its description
Right Angle	
Acute Angle	1. $\angle 3 \quad$ a. line
Obtuse Angle	2. $\overrightarrow{\mathrm{AB}}$ b. Line segment
Straight Angle	3.
Theta " ${ }^{\text {" }}$	c. ray
Number line	4. $\overleftrightarrow{A B}$ d. angle
x-y Plane	5. $\angle B A C, \angle C A B$
Colinear points	
midpoint	

How are angles measured? With a protractor

1. Put the hole of the protractor at the vertex of the angle.
2. Line up one side of the angle so that it goes through " 0 " on

\rightarrow

We can find the midpoint between any two numbers
on a number line by averaging them. $\frac{a+b}{2}$
How do you convert an intercept form quadratic equation into a vertex form quadratic equation?

$$
\frac{(-4)+(2)}{2}=\frac{-2}{2}=-1
$$

For the parabola, what special point has an x-coordinate that is the midpoint between the two x-intercepts?
vertex

We can find the midpoint of a segment that is on the (x, y) plane using the following formula:

The midpoint y-coordinate is the average of the y-coordinates of the two endpoints.

Does the order of x_{1} and x_{2} matter?
Why not? Commutative property of addition.

Y-values are all the same on
a horizontal line.
x-values are all the same on

> Midpoint of $\overline{\mathrm{BC}}=$?
> Point $\mathrm{B}:\left(x_{1}, y_{1}\right)=(4,3)$
> Point $\mathrm{C}:\left(x_{2}, y_{2}\right)=(4,1)$
> $\quad\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
Is it necessary to use the midpoint formula to calculate the x-value of a midpoint on

a vertical line?
Why not?

a vertical line.

Every $x-y$ pair is unique on this type of line.

Find the midpoint between ($-3,-6$) and ($6,-11$)

Find the midpoint of segment AB is $(4,-2)$ and one endpoint is (11, -5). What is the other endpoint?

$$
\left(\frac{x_{1}+11}{2}, \frac{y_{1}-5}{2}\right)=(4,-2)
$$

\square

