SM2 HANDOUT 6-2 (Two Variable Inequalities)

Solve $0>x^{2}-x-12$
The boundary \#'s separate the solution from the non-solution.

Test one value of ' x ' to see if it is a solution. Try $x=0$.

Graph the solution to the compound inequality:

How would you define (in words) what a solution to a single variable compound inequality means?

$$
y \geq x+3
$$

Fill in the table:

x	y	solution
-1	0	
-1	1	
-1	2	
-2	0	
-2	1	
-2	2	
-3	0	
-3	1	

Can you tell what the graph will look like?

Single Variable Inequality: The "boundary numbers" separate the solution from the non-solution.

$$
2 \leq x<7
$$

The shaded part of the graph is the solution.

$$
y \geq x+3
$$

The line: $y=x+3$
Is the boundary between the solution and non-solution.

The line divides the x - y plane into two halves.

$$
y>x+3
$$

Now it is just " $>$ " (not " \geq ")
Test a point on the line:
$(0,3)$

Do the points on the line make the inequality true?
solution to the inequality is all of the $x-y$ pairs in one of the "half planes".

$$
y>-2 x+3
$$

4. Pick a point and see if it is
the solution. If so, shade
that side of the line,
(otherwise shade the other
side).

Shade other side of line from $(0,0)$

Graph the following inequality.

$2 x-3 y>6$
Why does ">" end up being shaded below the line?

Non-linear 2 Variable inequality

$$
y>x^{2}-2
$$

Is the parabola solid or dotted?

Is the solution the region above or below the parabola?

