

This is the first function, so far, that

Describe the transformations to the parent function:

$$
y=4+\sqrt{x+3}
$$

What is the domain?
Hint: Find the endpoint. The xvalue of the endpoint and every x-value to the right is in the domain.

What is the range?
Hint: Find the endpoint. The y-value of the endpoint and every y-value above is in the range.

Square Root Function $f(x)=\sqrt{x}$

End point: $(0,0)$

Set-Builder Notation: a way of writing an equation that also defines the input values to use.
 "French Brackets" \rightarrow set

$$
f(x)=x^{2}+1
$$

Domain of $f(x):\{x=? ? ?\}$
Domain: $\{\mathrm{x}=(-\infty, \infty)\}$

$$
\frac{f(x)}{\text { outputs }}=\left\{\frac{x^{2}+1}{\text { rule }} \text {, for } \frac{x=(-\infty, \infty)}{\text { Inputs }}\right\}
$$

Domain of all square functions are "all real numbers" (redundant to write it in "set-builder" notation).

$$
k(x)=\{\sqrt{x}, \mathrm{x}=[0, \infty)\}
$$

Domain of all square root functions are NOT "all real numbers" (redundant BUT more useful to write it in "set-builder" notation)
$j(x)=\sqrt{x-2}$
Endpoint of $\mathrm{j}(\mathrm{x})=$?
Domain of $\mathrm{j}(\mathrm{x})=$?
Graph j(x)

Write $\mathrm{j}(\mathrm{x})$ in "set-builder" notation.

Graph j(x)

How would you define the following graph?

We call this a "piece-wise" defined function.

Graph them both:

$$
h(x)=\left\{\begin{array}{l}
2+\sqrt[3]{x}, x=(0, \infty) \\
0.4 x^{2}-1, x=(-\infty, 0]
\end{array}\right.
$$

But, put them on the same $x-y$ plot:

$$
h(x)=\left\{\begin{array}{l}
2+\sqrt[3]{x}, x=(0, \infty) \\
0.4 x^{2}-1, x=(-\infty, 0]
\end{array}\right.
$$

Graph these piecewise-defined functions: Now erase the part of the graph for each
apply based upon "restricted domain".

$$
h(x)=\left\{\begin{array}{l}
2+\sqrt[3]{x}, x=(0, \infty) \\
x^{2}-1, x=(-\infty, 0]
\end{array}\right.
$$

$h(x)=\left\{\begin{array}{l}x^{2}, x=(-\infty, 0) \\ |x|, x=[0, \infty)\end{array}\right\}$
$g(x)=\left\{\begin{array}{l}1+\sqrt{x}, x=(-\infty,-1) \\ 2 x-3, x=[0, \infty)\end{array}\right\}$

