

Try this on your calculator:

a. Set your "window" to
$x(\min)=-5$
$x(\max)=5$
$y(\min)=-20$
$y(\max)=20$

```
WINDOW
RINOW
max \(=-5\)
\(8 \mathrm{xax}=5\)
Yinin=-20
\(\begin{array}{ll}\mathrm{Min}=-20 \\ \mathrm{max} & =20\end{array}\)
\(4 \leq c 1=1\)
Xres=1
```

b. Graph the following $y=2 x^{2}+4 x-7$
c. Does the parabola open up or down?
d. How many "x-intercepts" does it have?

Compare the "tic" marks yaxis to those on the x-axis.

Why are they different?

Using the same equation, change your window
a. Set your "window" to
$x(\min)=-10$
$x(\max)=10$
$y(\min)=-20$
$y(\max)=20$

b. Graph the following $y=2 x^{2}+4 x-7$
c. What happens to the shape of the graph?
d. Why did it change?

Changing the window settings can cause vertical stretching of the graph without changing the equation!!!

Using the same equation (that you already entered):
a. Set your "window" to
$x(\min)=-20$
$x(\max)=20$
$y(\min)=-20$
$y(\max)=20$

b. Will the graph be narrower or wider?
c. Graph the same equation

$$
y=2 x^{2}+4 x-7
$$

As you increase the width of the window, the graph occupies a smaller and smaller portion of the window.
To return the "window" to the standard $+/-10$ units hit "zoom"

$\begin{aligned} & \mathrm{Ycc} 1=1 \\ & \downarrow \times \mathrm{res}=1\end{aligned}$

Finding where lines cross.

1. Enter the following 2 equations.

$$
y=2 x-4 \quad y=-2 x+4
$$

"2nd" + "calculate"

friculate	Answer the questions \rightarrow
2: zero ${ }^{\text {3 }}$ minimum	"enter" means "yes"

Use the "power of the calculator" to find the vertex.

1. Graph the equation.

2. What buttons do you push to use the "power of the calculator" to find the function's maximum value?
"2nd" + "calculate" + "4" ("maximum")
THLCIUEATE
2:zero
3: minimum
4: Maximum
6: interse
7: $5 f(x) d$

