

$$
y=x+1
$$

So far, we've used integers and \#'s halfway in between.
How many numbers are there between any 2 integers?.
What would happen to our graph if we used every possible value of ' x ' as an input value into the function?

More and more points are plotted.

negative slope!
Rise $=-6$
Run = 6
$m=\frac{\text { rise }}{\text { run }}=\frac{-6}{6}=-1$
$y=(-1) x+b$

Find the equation of a that passes through 2 points.
$(3,-1)$ and $(-2,2)$

Pick either point and substitute for x and y in the equation:
$(3)=(-1)(-2)+b$
Solve for 'b' (the y-intercept)
(3) $=2+b$
$-2 \quad-2$
$1=b$
$y=-x+1$

Re-write slope intercept form as standard form $y=2 x+2 \quad$ Slope-intercept \rightarrow standard form

Parallel \rightarrow same slope $\quad y=m x+b$

Write the equation of a line that is parallel to the line $y=2 x+1$ and passes through the point $(0,4)$

Write the equation of a line that is parallel to the line $y=3 x-4$ and passes through the point $(3,8)$

slopes of perpendicular lines are

1. reciprocals of each other.
2. opposite signs (+/-) of each other.

Is the slope positive or negative?
Negative slope

Find the slope intercept form of a line that is perpendicular to the line:

$$
y=2 x-6 \text { and passes through the point }(0,1)
$$

What two things do we know about the slopes of perpendicular lines?

The slopes of perpendicular lines are
of each other.
What is the slope a line that is perpendicular to each of the following?

$$
\begin{array}{ll}
y=2 x+1 & y=\frac{5}{9} x+2 \\
y=-\frac{3}{2} x-4 & y=-\frac{1}{6} x-7
\end{array}
$$

