

Your turn:

Write the following in "radical form"

$$
\begin{array}{ll}
5^{\text {th }} \text { Root of } 18 & =\sqrt[5]{18} \\
4^{\text {th }} \text { Root of } 25 & =\sqrt[4]{25}
\end{array}
$$

What type of number does $5^{\text {th }}$ sound like?

$$
1 / 5
$$

Are radicals related to powers?

$$
\begin{array}{|r}
3^{1 / 2}=\sqrt[2]{3} \\
5^{1 / 3}=\sqrt[3]{5}
\end{array} \begin{aligned}
& 3 \sqrt[2]{y}=3 y^{1 / 2} \\
& 5 \sqrt[3]{7}=5(7)^{1 / 3} \\
& \text { Multiplication (by a coeffic }
\end{aligned}
$$

$$
\sqrt[2]{x}=x^{1 / 2}
$$

$$
\sqrt[3]{7}=7^{1 / 3}
$$

None of these have coefficients!

Multiplication (by a coefficient) is "repeated addition." This explains why coefficients of radicals become
coefficients of powers.

$$
\begin{gathered}
3 \sqrt[2]{y}=\sqrt{y}+\sqrt{y}+\sqrt{y} \\
\sqrt{y}=y^{1 / 2}
\end{gathered}
$$

$$
3 y^{1 / 2}=y^{1 / 2}+y^{1 / 2}+y^{1 / 2}
$$

What happens if there is a product under the radical?

How did we show that the index number applied to the entire product (radicand) when re-written in "power form"?

Power of a product \rightarrow product inside parentheses with an exponent.

Write the following radicals as powers.

a numerator and that has both
The exponent can be written as a rational number.
Exponential Form

$$
\begin{gathered}
\sqrt[2]{3 m} \\
4 \sqrt[3]{5 y} \\
3 m \sqrt[4]{6 n} \\
\sqrt[5]{x^{3} y^{2}} \\
5 \sqrt[4]{3 m^{2}}
\end{gathered}
$$

What happens if there is a power under the radical?

How did we show that the index number applied to the entire product (including the power) when re-written in "power form"?

Power of a product \rightarrow product inside parentheses with an exponent.

$$
\begin{aligned}
& \sqrt[5]{x^{2} y} \\
& 6 \sqrt[3]{3 m^{2}}
\end{aligned}
$$

Multiply Powers Property $\quad y^{2} * y^{3}=? \quad=y^{2+3}=y^{5}$
When multiplying "same based powers" add the exponents.
$x^{\frac{2}{3}} * x^{\frac{3}{4}} \rightarrow x^{\frac{2}{3}+\frac{3}{4}} \quad$ Yes, you must be able to add fractions
Working with just the exponent $\rightarrow \quad \frac{2}{3}+\frac{3}{4}$
Multiply by " 1 " in the form of... $\rightarrow \quad \frac{2}{3}+\frac{3}{4} \quad \rightarrow \frac{8}{12}+\frac{9}{12} \rightarrow \frac{17}{12}$
Rewrite the power $\rightarrow \quad \rightarrow x^{\frac{17}{12}}$

Exponent of a Power Property

$$
\left(y^{2}\right)^{3}=?=y^{2^{* 3}}=y^{6}
$$

When multiplying "same based powers" add the exponents.

$$
\left(y^{1 / 2}\right)^{2 / 3}=y^{\frac{1}{2} * \frac{2}{3}}=y^{\frac{2}{6}}=y^{\frac{1}{3}}
$$

$\left(x^{\frac{3}{4}} y^{5}\right)^{\frac{1}{3}}$

Negative Exponent Property

Grab and drag same-based powers to be next to each other.

$$
\frac{x^{2} y^{2 / 3}}{y^{-1 / 2}}=x^{2} y^{2 / 3} y^{1 / 2}=x^{2} y^{\frac{2}{3}+\frac{1}{2}}=x^{2} y^{\frac{4}{6}+\frac{3}{6}}=x^{2} y^{\frac{7}{6}}
$$

$$
\left(\frac{x^{2}}{y^{3 / 2}}\right)^{2 / 3}
$$

$$
3 x\left(y^{1 / 5}\right)^{2 / 3}
$$

$$
\frac{2 x^{\frac{1}{3}}}{x^{\frac{2}{3}}} \rightarrow \frac{2}{x^{\frac{2}{3}} x^{-\frac{1}{3}}} \rightarrow \frac{2}{x^{\frac{1}{3}}} \quad \frac{\text { Not allowed to have rational }}{\text { exponents in the denominator }}
$$

$$
\rightarrow 2 x^{-1 / 3}
$$

Not allowed to have negative exponents.

Rational Exponents in the Denominator

Rational exponent in the denominator means irrational denominator, which we rationalize
$\frac{1}{y^{1 / 2}}=\frac{1}{\sqrt{y}} * \frac{\sqrt{y}}{\sqrt{y}}=\frac{\sqrt{y}}{y}$
Rational exponent in the denominator \rightarrow what
is the next bigger natural number from $1 / 2$?
$\frac{1}{y^{1 / 2}} * \frac{y^{1 / 2}}{y^{1 / 2}}=\frac{y^{1 / 2}}{y}$
What number do you add to $1 / 2$ to get 1 ? In order to add a number to an exponent you have to multiply by a same-based power with the exponent you are trying to add.

Negative Exponent Property

$\frac{2 x^{\frac{1}{3}}}{x^{\frac{2}{3}}} \rightarrow \frac{2}{x^{\frac{2}{3}} x^{-\frac{1}{3}}} \rightarrow \frac{2}{x^{\frac{1}{3}}}$
What is the next bigger whole number than $1 / 3$?

What number do you add to $1 / 3$ to get 1 ?

$$
\begin{aligned}
\rightarrow \frac{2}{x^{\frac{1}{3}}} * \frac{x^{\frac{2}{3}}}{x^{\frac{2}{3}}} & \rightarrow \frac{2 x^{\frac{2}{3}}}{x^{\frac{1}{3}}+\frac{2}{3}} \\
& \rightarrow \frac{2 x^{\frac{2}{3}}}{x}
\end{aligned}
$$

$2 / 3$
Multiply by one "in the form of" a same-base power whose exponent is 2/3 (both numerator and denominator)

