Math-2 HANDOUT 2-4 (Radicals)

$\sqrt{3}$ What number is equivalent to the square root of 3 ? $x=\sqrt{3}$ Square both sides of the equation
$(x)^{2}=(\sqrt{3})^{2} \quad x^{2}=3$
$x=\sqrt{3}$ is an equivalent statement to $x^{2}=3$

$$
\begin{aligned}
\sqrt{3} & \approx 1.732 \quad \text { There is no equivalent number } \\
& \approx 1.7321 \quad \text { The decimal, is just an } \\
& \approx 1.73205 \\
& \approx 1.732051 \\
& \approx 1.7320508 \ldots
\end{aligned}
$$

Adding and subtracting radicals

Can these two terms be combined using addition? $3 x+2 x$
Write 3 x as repeated addition $x+x+x$
Write 2 x as repeated addition $\quad x+x$

$$
3 x+2 x \rightarrow x+x+x+x+x \quad \rightarrow
$$

When multiplication is written as repeated addition, "like terms" look exactly alike.

$$
\begin{array}{ll}
3 \sqrt{x}+2 \sqrt{x} \rightarrow \sqrt{x}+\sqrt{x}+\sqrt{x}+\sqrt{x}+\sqrt{x} & \rightarrow \\
3 \sqrt{6}+2 \sqrt{6} \rightarrow \sqrt{6}+\sqrt{6}+\sqrt{6}+\sqrt{6}+\sqrt{6} & \rightarrow
\end{array}
$$

$$
\begin{aligned}
& \text { Define "like powers" "Same__, same__ } \quad 3 x^{4}+2 x^{4} \rightarrow 5 x^{4}
\end{aligned}
$$

Define "like radicals" "Same_, same_.

$$
3 \sqrt{6}+2 \sqrt{6} \rightarrow 5 \sqrt{6}
$$

Circle the "like radicals" that can be added.

$$
\begin{array}{cl}
\sqrt{2}+\sqrt{3} & \sqrt[4]{5}+\sqrt[4]{5} \\
2 \sqrt{3}+3 \sqrt{2} & 3 \sqrt[5]{2}+4 \sqrt[5]{2} \\
\sqrt[4]{2}+\sqrt[3]{2} & 6 \sqrt[3]{4}+6 \sqrt[4]{4}
\end{array}
$$

Simplify the following:	
$3 \sqrt{2}+5 \sqrt{2}$	$\rightarrow+$
$5 \sqrt{3}-4 \sqrt{3}$	$\rightarrow+$
$\sqrt{5}+3 \sqrt{5}$	$\rightarrow+$
$7 \sqrt{6 x}+2 \sqrt{6 x}$	$\rightarrow+$
$3 \sqrt{x}+2 \sqrt{x}$	$\rightarrow+$
$5 \sqrt{2 x}-\sqrt{5 x}+3 \sqrt{5 x}$	
$7 \sqrt{6}+2 \sqrt{24}$	Not "like terms" (in their present form),
	We'll talk about how to add these later.

$$
\left.\begin{array}{lc}
\sqrt{3} * \sqrt{2} & \sqrt{3} \approx 1.7321 \ldots \quad \sqrt{2} \approx 1.4142 \ldots \\
\sqrt{3 * 2} \rightarrow \sqrt{6} & \sqrt{3 * \sqrt{2} \approx 2.4495} \\
\text { Will this work? } & \sqrt{6} \approx 2.4495
\end{array}\right) .
$$

$$
\sqrt{a} * \sqrt{b}=\sqrt{a b}
$$

Simplify the following:

$$
\begin{array}{cc}
\begin{array}{|c|}
\hline a \\
\\
\text { Simplify the following: } \\
\text { Si }
\end{array} & 2 \sqrt{3} * 3 \sqrt{5} \\
\hline 3 \sqrt{8} * 5 \sqrt{2} & \rightarrow+ \\
3 * \sqrt{8} * 5 * \sqrt{2} & 7 \sqrt{6} * 2 \sqrt{5} \\
3 * 5 * \sqrt{8} * \sqrt{2} & \rightarrow \\
15 * \sqrt{8} * \sqrt{2} & \sqrt{5}+3 \sqrt{5} \\
15 * \sqrt{16} & \rightarrow+ \\
15 * 4=60 & \rightarrow
\end{array}
$$

Simplify radicals: use the Product of Radicals to "break apart" the radical into a "perfect square" times a number.

$$
\sqrt{a} * \sqrt{b}=\sqrt{a b}
$$

$$
\sqrt{18} \rightarrow \sqrt{9} * \sqrt{2} \rightarrow 3 * \sqrt{2} \rightarrow 3 \sqrt{2}
$$

Simplify
$\sqrt{24}$
$3 \sqrt{32 x^{2}}$
\rightarrow

\rightarrow \square

$$
\text { Can we add "unlike" radicals? } \quad \sqrt{a} * \sqrt{b}=\sqrt{a b}
$$

$$
\begin{aligned}
& 7 \sqrt{6}+2 \sqrt{24} \quad \text { Simplify } \\
\rightarrow & 7 \sqrt{6}+(2 * \sqrt{4} * \sqrt{6}) \\
\rightarrow & 7 \sqrt{6}+(2 * 2 * \sqrt{6}) \\
\rightarrow & 7 \sqrt{6}+4 \sqrt{6} \\
\rightarrow & 11 \sqrt{6} \\
- & 3 \sqrt{32}+2 \sqrt{8}
\end{aligned}
$$

Simplify radicals: use the Product of Radicals to "break apart" the radical into a "powers of exponent ' m '" times a number.

$$
\sqrt[m]{a} * \sqrt[m]{b}=\sqrt[m]{a b}
$$

$$
\sqrt[3]{x^{4}} \rightarrow \sqrt[3]{x^{3}} * \sqrt[3]{x} \rightarrow x \sqrt[3]{x}
$$

$\underline{\text { Simplify }}$

Another way to Simplify Radicals Factor, factor, factor!!!
$\sqrt{54} \rightarrow \sqrt[2]{54} \rightarrow \sqrt[2]{2 * 27} \rightarrow \sqrt[2]{2 * 3 * 9} \rightarrow \sqrt[2]{2 * 3} 3 * 3$
What is the factor that is used ' 2 ' times under the radical?

$$
\text { Bring that out factor (that is used } 2 \text { times). }
$$

$$
\rightarrow 3 \sqrt[2]{2 * 3} \quad \rightarrow 3 \sqrt{6}
$$

Using Properties of Exponents to reduce the writing: $\sqrt[4]{32 x^{6}}$
\qquad

Rationalizing the denominator: using mathematical properties to change an irrational number (or imaginary) in the denominator into a rational number.
$\frac{1}{\sqrt{6}} * \frac{\sqrt{6}}{\sqrt{6}} \rightarrow \frac{\sqrt{6}}{6}$
We take advantage of the idea:
$\sqrt{2} * \sqrt{2}=\sqrt{2 * 2}=\sqrt{4}=2$
$\sqrt{3} * \sqrt{3}=\sqrt{3 * 3}=\sqrt{9}=3$
$\frac{1+\frac{\sqrt{2}}{\sqrt{2}}}{\sqrt{2}} \rightarrow \frac{\sqrt{2}}{2}$
Identity
multiplying by ' 1 ' doesn't change Property of the number.
$\frac{2}{\sqrt{6}}$
$\frac{25}{\sqrt{15}}$
$\frac{14}{3 \sqrt{21}}$
\rightarrow \qquad

In all of the previous examples we just multiplied by "one in the form of" the denominator radical over the denominator radical.

$$
\frac{3 \sqrt{7}}{\sqrt{8}} \rightarrow \frac{3 \sqrt{7}}{\sqrt{8}} * \frac{\sqrt{8}}{\sqrt{8}} \rightarrow \frac{3 \sqrt{7 * 2 * 2 * 2}}{8} \rightarrow \frac{3 * 2 \sqrt{7 * 2}}{8}
$$

It is always easier to simplify (by factoring) BEFORE you multiply
$\frac{3 \sqrt{7}}{\sqrt{8}} \rightarrow \frac{3 \sqrt{7}}{\sqrt{4} * \sqrt{2}} \rightarrow \frac{3 \sqrt{7}}{2 \sqrt{2}} * \frac{\sqrt{2}}{\sqrt{2}} \rightarrow \frac{3 \sqrt{14}}{2 * 2} \rightarrow \frac{3 \sqrt{14}}{4}$
$\frac{6 \sqrt{5}}{3 \sqrt{12}} \rightarrow \frac{\beta * 2 * \sqrt{5}}{\$ * \sqrt{4} * \sqrt{3}} \rightarrow \frac{\mathbf{Q}^{* \sqrt{5}}}{8 * \sqrt{3}} \rightarrow \frac{\sqrt{5}}{\sqrt{3}} * \frac{\sqrt{3}}{\sqrt{3}} \rightarrow \frac{\sqrt{15}}{3}$

What about higher index numbers?

$$
\frac{1}{\sqrt[3]{x}} * \frac{\sqrt[3]{x * x}}{\sqrt[3]{x * x}} \rightarrow \frac{\sqrt[3]{x^{*} x}}{\sqrt[3]{x^{*} x * x}} \rightarrow \frac{\sqrt[3]{x^{2}}}{x}
$$

How many more ' x 's are needed in the denominator radicand?
Remember: the cubed root of x -cubed equals $\mathrm{x} . \sqrt[3]{x^{3}}=x$
We need two more x's under the denominator radical.
Using the multiply powers property we don't have to write out all the individual x 's.
$\frac{1}{\sqrt[3]{x}} * \frac{\sqrt[3]{x^{2}}}{\sqrt[3]{x^{2}}} \rightarrow \frac{\sqrt[3]{x^{2}}}{x}$

What about variables?

$$
\begin{aligned}
& \frac{3}{\sqrt{5 x}} * \frac{\sqrt{5 x}}{\sqrt{5 x}} \rightarrow \frac{3 \sqrt{5 x}}{5 x} \\
& \frac{\sqrt{15}}{\sqrt{5 x}}
\end{aligned}
$$

$$
\rightarrow
$$

\square

