SM2 HANDOUT 2-2 (Properties of Exponents)

What is a power?
Power: An \qquad formed by repeated
multiplication of the \qquad .

The exponent applies to the number or variable
\qquad to its left, not to the coefficient !!!

No Exponent? $\quad 3 x=3^{1} x^{1}$

Usually, we don't write the exponent \qquad (saves ink).

No Coefficient? $\quad x^{3}=1 * x^{3}=1^{1} * x^{3}$
Usually, we don't write the coefficient \qquad (saves ink).

Negative? $-x^{2}=(-1) * x^{2}=(-1)^{1} * x^{2}$

Usually, we don't write the coefficient ' -1 ', we just put the
\qquad " (saves ink).

$$
\begin{gathered}
3 x^{2}=? \\
(3 x)^{2}=?
\end{gathered}
$$

$4(3 x)^{2}=$? In GEMA, exponents occur before multiplication.

$$
\left(\frac{x}{2}\right)^{2}=?
$$

$$
\left(\frac{2}{3 x}\right)^{3}=?
$$

Multiply Powers Property

Exponent of a Power Property $\left(x^{2}\right)^{3}$

$$
\left(x^{2}\right)^{3}=(x * x)(x * x)(x * x)
$$

This is ' x ' used as a factor how many times?

$$
\left(x^{2}\right)^{3}==x^{6}
$$

$$
\text { ' } x \text { ' used as a factor six times }
$$

$$
\left(x^{2}\right)^{3}=x^{2 * 3}=x^{6}
$$

When you multiply powers having the
you multiply the exponents.

Exponent of a Product Property

$$
\begin{gathered}
(x y)^{2}=(x y)(x y)=x * y * x * y=x * x * y * y \\
=x^{2} y^{2} \\
\quad(x y)^{m}=x^{m} y^{m}
\end{gathered}
$$

This makes it seem like you can "distribute" in the exponent. This only works with the power of a product!!

$$
\begin{aligned}
& (x-y)^{2} \neq x^{2}-y^{2} \\
& (x-y)^{2}=(x-y)(x-y) \\
& \quad=x^{2}-2 x y+y^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left(x^{2}\right)^{5}=? \\
& \left(5 x^{2}\right)\left(2 x^{3}\right)=? \\
& \left(2 y^{5}\right)^{3}=?
\end{aligned}
$$

Combination of
 1. Power of a Product
 2. Power of a Power
 $$
\begin{aligned} \left(3 x^{3} y^{4}\right)^{2} & =\left(3^{1} x^{3} y^{4}\right)^{2} \\ & =3^{2} x^{6} y^{8} \end{aligned}
$$

Constants (integer, etc.) usually have an exponent of ' 1 '.
' x ' is a number, we just don't know what it is. You treat all numbers the same (whether they are variables or constants).

$$
3 x^{2}\left(4 x^{3}\right)=?=3 * 4 *\left(x^{2}\right)\left(x^{3}\right)=12 x^{5}
$$

You can re-arrange the order of multiplication.

Coefficients of the powers are handled

 separately from the base and the exponent.$$
\begin{aligned}
& \text { Be careful of exponents of negative numbers } \\
& \left(-x^{3} y^{4}\right)^{2} \\
= & \left((-1)^{1} x^{3} y^{4}\right)^{2} \text { Turn negative signs into multiplication by }-1 . \\
= & (-1)^{2} x^{6} y^{8} \quad \text { This way you will be able to tell if the } \\
& =x^{6} y^{8} \\
& \left(-2 x^{2} y^{6}\right)^{3} \\
= & \left((-2)^{1} x^{2} y^{6}\right)^{3} \\
= & (-2)^{3} x^{6} y^{18} \quad \text { A negative versative number raicien is positive or negative. } \\
= & -8 x^{6} y^{18} \quad \text { exponent remains negative. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { simplify } \\
& \left(-2 x^{2} y^{4} z\right)^{3} \\
& 2\left(-m^{4} x^{3}\right)^{5} \\
& -3\left(-2 x^{2} y z^{3}\right)^{4} \\
& \left(-2 x^{2} y^{4} z\right)^{3} \\
& -3\left(-2 x^{2} y z^{3}\right)^{4}
\end{aligned}
$$

Negative Exponent Property
Possible errors

When you "Grab and drag" the base and its exponent across the "boundary line" between numerator and denominator,
you just change the sign of the exponent.
DO NOT GRAB the coefficient! $\quad \frac{4 * x^{-2}}{1} \neq \frac{1}{4 x^{2}}$

Zero Exponent Property

Any base raised to the zero power simplifies to one.

$$
10^{3}=1000 \quad 10^{2}=100 \quad 10^{1}=10 \quad 10^{0}=1
$$

$$
\begin{aligned}
& \left(\frac{x^{2}}{x^{4}}\right)^{2} \\
& \left(\frac{y x^{3}}{x z}\right)^{4} \\
& \left(\frac{3 x^{0}}{2 x^{-1} y}\right)^{2} \\
& \left(\frac{2 x^{2} y z^{-2}}{6 x^{4} y^{3} z^{3}}\right)^{2}
\end{aligned}
$$

