Math-2A Properties 3-1 (Radicals)

Product of Radicals Property: the product square roots is equivalent to the square root of the product of the radicands. It's easier to see this as an expression: $\sqrt{a} * \sqrt{b} \rightarrow \sqrt{a * b}$

A nice example: $\quad \sqrt{4} * \sqrt{9} \rightarrow \sqrt{4 * 9}$

$$
\begin{gathered}
2 * 3 \rightarrow \sqrt{36} \\
2 * 3 \rightarrow 6
\end{gathered}
$$

An example: $\sqrt{5} * \sqrt{2}=\sqrt{10}$

We use this property when simplifying radicals:

$$
\begin{aligned}
\sqrt{18} & \rightarrow \sqrt{9} * \sqrt{2} \rightarrow 3 * \sqrt{2} \rightarrow 3 \sqrt{2} \\
3 \sqrt{32 x^{2}} & \rightarrow 3 * \sqrt{16} * \sqrt{x^{2}} * \sqrt{2} \rightarrow 3 * 4 * x * \sqrt{2} \rightarrow 12 x \sqrt{2}
\end{aligned}
$$

This is NOT a property of radicals. NEVER DO THIS!!!!

$$
\begin{array}{ll}
\sqrt{a}+\sqrt{b} \neq \sqrt{a+b} & \sqrt{4}+\sqrt{9} \rightarrow \sqrt{13} \\
& \sqrt{4}+\sqrt{9} \rightarrow 2+3 \rightarrow 5 \neq \sqrt{13}
\end{array}
$$

