Which shapes are similar?

Which shapes are similar?

Math-2A

Lesson 9-1
Triangle Similarity

Compare BC to AC with a ratio.

Compare YZ to XZ with a ratio.

$$
\frac{Y Z}{X Z}=?=\frac{7}{10}
$$

Proportional: to be related by a constant ratio. We say lengths are proportional if the ratios of corresponding lengths equals the same number.

Proportional: to be related by a constant ratio. We say sides are proportional if the ratios of corresponding sides equals the same number.

$$
\frac{A E}{A C}=\frac{A D}{A B}=\frac{D E}{B C}=\frac{10}{5}=2
$$

The side lengths of $\triangle A D E$ are twice as long as the side lengths in $\triangle \mathrm{ABC}$

Scale Factor: the number that is multiplied by the length of each side of one triangle to equal the lengths of the sides of the other similar triangle.
Scale Factor ${ }_{\triangle A B C \rightarrow \triangle X Y Z}=\frac{Z X}{C A}=\frac{10}{5}=2$

Similar: Same shape but not necessarily the same size. Similar Symbol: ~

Review: Triangle Congruence

All 3 pairs of corresponding angles and all 3 pairs of corresponding sides are congruent (CPCTC)

We can prove Triangle Congruence using congruence of only three pairs of corresponding parts.

Side-Side-Side (SSS)

Side-Angle-Side (SAS)

Angle-Side-Angle (ASA) ${ }_{D}$

Angle-Angle-Side (AAS)

Triangle Similarity: IF all corresponding angles are congruent and all corresponding sides are proportional THEN the triangles are similar.

Triangle Similarity: But we don't need all corresponding angles are congruent and all corresponding sides are proportional.

We can get by with the following patterns: $\underline{A A}$, SSS, and SAS

Angle-Angle (AA) Triangle Similarity: IF two pairs of corresponding angles are congruent THEN the triangles are similar.

$\angle E \cong \angle B$
60°

Why don't we need AAA?

Side-Side-Side (SSS) Triangle Similarity: IF all three pairs of corresponding sides are proportional THEN the triangles are similar.

Examples of SSS Triangle similarity

$$
\frac{\operatorname{side}_{T r i-1}}{\operatorname{side}_{T r i-2}}=\frac{10}{5}=\frac{20}{10} \neq \frac{13}{6}
$$

NOT similar

If the triangles to the right are similar, what must be the value of ' x '?

Side-Angle-Side (SAS) Triangle Similarity: IF two pairs of corresponding sides are proportional and the included angles are congruent THEN the triangles are similar.

Scale Factor: the number that is multiplied by the length of each side of one triangle to equal the lengths of the sides of the other similar triangle.
$A B($ scale factor $)=G E$
scale factor ${ }_{\triangle \mathrm{ABC} \rightarrow \triangle \mathrm{GEF}}=\frac{G E}{A B}=\frac{10}{15}=\frac{2}{3}$

$C B=7.5$
12.99

If the triangles are similar:
a) Show that the triangles are similar using ratios (if applicable)
b) give the similarity theorem
c) write the similarity statement.
d) write the scale factor (small Δ to large Δ)

$$
\frac{V T}{Q T}=\frac{28}{14}=2 \quad \frac{T U}{T R}=\frac{16}{8}=2 \quad \frac{V U}{Q R}=\frac{20}{10}=2
$$

SSS Triangle Similarity

$\Delta T U V \sim \Delta T R Q$

scale factor ${ }_{\Delta T R Q \rightarrow \Delta T U V}=2$

Name the two triangles. $\quad \Delta F G H$ and $\triangle F R Q$ Name the angle pair congruencies: List the missing side lengths:

$R F=\underline{104-64=40}$
$\angle F \cong \angle F \quad \angle H F G \cong \angle Q F R$

$$
H F=\underline{30+48=78}
$$

If the triangles are similar:
a) Show that the triangles are similar using ratios (if applicable)
b) give the similarity theorem
c) write the similarity statement.
d) write the scale factor (small Δ to large Δ)

$$
\frac{F G}{F R}=\frac{104}{40}=2.60 \quad \frac{F H}{F Q}=\frac{78}{30}=2.60
$$

$$
\angle F \cong \angle F
$$

SAS Triangle Similarity

$\Delta F G H \sim \Delta F R Q$

scale factor ${ }_{\Delta F R Q \rightarrow \triangle F G H}=2.6$

If the triangles are similar:
a) Show that the triangles are similar using ratios (if applicable)

39
b) give the similarity theorem
c) write the similarity statement.
d) write the scale factor (small Δ to large Δ)

$$
\begin{aligned}
& \frac{F G}{F M}=\frac{33}{20}=1.65 \\
& \frac{F H}{F N}=\frac{39}{25}=1.56 \quad \text { NOT Similar }
\end{aligned}
$$

If the triangles are similar:
a) Show that the triangles are similar using ratios (if applicable)
b) give the similarity theorem
c) write the similarity statement.
d) write the scale factor (small Δ to large Δ)
$\angle H T U \cong \angle H G F$ (corresponding angles)
$\angle H \cong \angle H$

AA Triangle Similarity

$\Delta H G F \sim \Delta H T U$

scale factor $=? ?$

