Math-2 Lesson 8-2

Vertically Stretched
Exponential Function

The "Parent" Exponential Function

$$
y=b^{x} \longleftarrow \text { exponent }
$$

$y=2^{x}$ (base 2 exponential function)
$y=3^{x}$ (base 3 exponential function)
$y=\left(\frac{1}{2}\right)^{x}$ (base $1 / 2$ exponential function)
The base MUST BE positive and CANNOT equal 1.

$$
b=(0,1) \cup(1, \infty)
$$

Fill in the output values of the table and graph the points.

$$
f(x)=2^{x}
$$

Exponential Growth: the graph is increasing. Growth occurs when the base of the exponential is greater than 1.

Exponential Decay: the graph is decreasing. decay occurs when the base of the exponential is between 0 and 1.

$$
y=b^{x} \quad \text { 'b' }=1 \rightarrow \text { no growth } \quad 0<\text { 'b' }<1 \rightarrow \text { decay }
$$

$$
f(x)=1^{x} \quad g(x)=(0.9)^{x}
$$

x	$f(x)$
-1	1
0	1
1	1

x	$g(x)$
-1	1.1
0	1
1	0.9

$\mathrm{h}(x)=(0.67)^{x} \quad k(x)=(0.5)^{x}$

x	$h(x)$
-1	1.5
0	1
1	0.67

x	$k(x)$
-1	5
0	1
1	0.2

$f(x)=2^{x} \quad \mathrm{k}(x)=2^{x}+4$

x	$2^{()}$	$\mathrm{f}(\mathrm{x})$	$k(x)$
-2	2^{-2}	0.25	4.25
-1	2^{-1}	0.5	4.5
0	2^{0}	1	5
1	2^{1}	2	6
2	2^{2}	4	8

Horizontal $y=0$
asymptote: $y=4$
Domain $=$? $\quad x=(-\infty, \infty)$

$$
x=(-\infty, \infty)
$$

Shifted UP by 4

y -intercept $=$?
$(0,1)$
$(0,5)$
$f(x)=2^{x} \quad g(x)=3(2)^{x}$

\mathbf{x}	$\left.2^{(}\right)$	$\mathrm{f}(\mathrm{x})$	$g(x)$
-2	2^{-2}	0.25	0.75
-1	2^{-1}	0.5	1.5
0	2^{0}	1	3
1	2^{1}	2	6
2	2^{2}	4	12

Vertically stretched by a factor of 3

Horizontal $\quad y=0$
asymptote: $y=0$

$$
\text { Domain }=? \begin{aligned}
& x=(-\infty, \infty) \\
& \\
& x=(-\infty, \infty)
\end{aligned}
$$

$$
\begin{array}{ll}
\text { range }=? & y \stackrel{-1}{\square}(0, \infty) \\
& y=(0, \infty)
\end{array}
$$

y -intercept $=$?
$(0,1)$
$(0,3)$

Transformations of the Exponential Function

Transformation Form of the Exponential Function

y-intercept: ($0, a+k$)
$h(0)=3(2)^{0}+4$

$$
h(0)=7
$$ of the exponential)

$$
f(x)=2^{x}
$$

$$
h(x)=3(2)^{x}+4
$$

And how many units above the HA the y intercept is.

Growth Factor (the base of the exponential)

What is the equation of the graph?

1) Start with $g(x)=a b^{x}+k$
2) Find ' k '

Horizontal asymptote:

What is the equation of the graph?

1) Start with $g(x)=a b^{x}+k$
2) Find ' k '

Horizontal asymptote: $\mathrm{y}=3$

$$
k=3 \quad y=a b^{x}+3
$$

What is the equation of the graph?

1) Start with $g(x)=a b^{x}+k$
2) Find ' k '

Horizontal asymptote: $\mathrm{y}=3$

$$
k=3 \quad y=a b^{x}+3
$$

3) Find 'a' How many spaces above the HA is the y-intercept?

What is the equation of the graph?

1) Start with $g(x)=a b^{x}+k$
2) Find ' k '

Horizontal asymptote: $\mathrm{y}=3$

$$
k=3 \quad y=a b^{x}+3
$$

3) Find 'a' How many spaces above the HA is the y intercept?

$$
a=1 \rightarrow y=b^{x}+3
$$

4) Substitute a "nice" x-y pair from the graph into the equation.
$(1,5) \rightarrow$
$5=b^{1}+3$
$\rightarrow \mathrm{b}=2$
$y=2^{x}+3$

What is the equation of the graph?

1) Start with $g(x)=a b^{x}+k$
2) Find ' k '

Horizontal asymptote: $\mathrm{y}=3$

$$
k=3 \quad y=a b^{x}+3
$$

3) Find 'a' How many spaces above the HA is the y intercept?

$$
a=1 \rightarrow y=b^{x}+3
$$

4) Substitute a "nice" x-y pair from the graph into the equation.

What is the equation of the graph?

1) Start with $g(x)=a b^{x}+k$
2) Find ' k '

Horizontal asymptote:

What is the equation of the graph?

1) Start with $g(x)=a b^{x}+k$
2) Find ' k '

Horizontal asymptote: $\mathrm{y}=-1$

$$
k=-1 \quad y=a b^{x}-1
$$

What is the equation of the graph?

1) Start with $g(x)=a b^{x}+k$
2) Find ' k '

Horizontal asymptote: $\mathrm{y}=-1$

$$
k=-1 \quad y=a b^{x}-1
$$

3) Find 'a' How many spaces above the HA is the y-intercept?

What is the equation of the graph?

1) Start with $g(x)=a b^{x}+k$
2) Find ' k '

Horizontal asymptote: $\mathrm{y}=-1$

$$
k=-1 \quad y=a b^{x}-1
$$

3) Find 'aHow many spaces above the HA is the y-intercept?

$$
\mathrm{a}=2 \rightarrow y=2 b^{x}-1
$$

What is the equation of the graph?

1) Start with $g(x)=a b^{x}+k$
2) Find ' k '

Horizontal asymptote: $\mathrm{y}=-1$

$$
k=-1 \quad y=a b^{x}-1
$$

3) Find 'a' How many spaces above the HA is the y-intercept?

$$
a=2 \rightarrow y=2 b^{x}-1
$$

4) Substitute a "nice" x-y pair from the graph into the equation.
$(1,5) \rightarrow$
$5=2 b^{1}-1$
\rightarrow
$b=3$
$y=2\left(3^{x}\right)-1$

What is the equation of the graph?

1) Start with $g(x)=a b^{x}+k$
2) horizontal asymptote

What is the equation of the graph?

1) Start with

$g(x)=a b^{x}+k$

2) horizontal asymptote $y=2$

$$
k=2 \quad y=a b^{x}+2
$$

What is the equation of the graph?

1) Start with

$$
g(x)=a b^{x}+k
$$

2) horizontal asymptote $\mathrm{y}=2$

$$
k=2 \quad y=a b^{x}+2
$$

3) y-intercept How many spaces above the HA is the y-intercept?

$$
\begin{array}{ll}
a=1 & y=1 * b^{x}+2 \\
& y=b^{x}+2
\end{array}
$$

What is the equation of the graph?

1) Start with

$$
g(x)=a b^{x}+k
$$

2) horizontal asymptote $\mathrm{y}=2$

$$
k=2 \quad y=a b^{x}+2
$$

3) y-intercept How many spaces above the HA is the y-intercept?

$$
\begin{array}{ll}
a=1 & y=1 * b^{x}+2 \\
& y=b^{x}+2
\end{array}
$$

4) "Nice" x-y pair $(-1,5)$

What is the equation of the graph?

1) Start with

$$
g(x)=a b^{x}+k
$$

2) horizontal asymptote $y=2$

$$
k=2 \quad y=a b^{x}+2
$$

3) y-intercept How many spaces above the HA is the y-intercept?

$$
a=1 \quad y=b^{x}+2
$$

4) "Nice" x-y pair $(-1,5)$

$$
\begin{aligned}
& 5=b^{-1}+3 \\
& 2=b^{-1} \quad 2=\frac{1}{b} \quad b=\frac{1}{2}
\end{aligned}
$$

$$
y=\left(\frac{1}{2}\right)^{x}+2
$$

What is the equation of the graph?

1) Start with $g(x)=a b^{x}+k$
2) horizontal asymptote

What is the equation of the graph?

1) Start with $g(x)=a b^{x}+k$
2) horizontal asymptote $\mathrm{y}=1$

$$
k=1 \quad y=a b^{x}+1
$$

What is the equation of the graph?

1) Start with $g(x)=a b^{x}+k$
2) horizontal asymptote $\mathrm{y}=1$

$$
k=1 \quad y=a b^{x}+1
$$

3) y-intercept How many spaces above the HA is the y-intercept?

$$
a=3 \quad y=3 b^{x}+1
$$

What is the equation of the graph?

1) Start with

$$
g(x)=a b^{x}+k
$$

2) horizontal asymptote $\mathrm{y}=1$

$$
k=1 \quad y=a b^{x}+1
$$

3) y-intercept How many spaces above the HA is the y-intercept?

$$
a=3 \quad y=3 b^{x}+1
$$

4) "Nice" x-y pair $(-1,7)$

$$
\begin{aligned}
& 7=3 b^{-1}+1 \\
& 6=3 b^{-1} \\
& 2=b^{-1} \quad 2=\frac{1}{b} \quad b=\frac{1}{2} \quad y=3\left(\frac{1}{2}\right)^{x}+1
\end{aligned}
$$

