Math-2A Lesson 8-2

Distance
And
The Pythagorean Theorem

Distance

How do we represent the Length of line segment $\overline{\mathrm{AB}}$?

AB

We measure the Length of a line segment with a ruler.
Can a distance be negative?
distance formula distance $_{\mathrm{a} \leftrightarrow \mathrm{b}}=|a-b|$

The distance between -2 and 3 on the number line
distance $_{-2 \leftrightarrow 3}=|a-b|=|(-2)-(3)|=|-5|=5$

$$
=|(3)-(-2)|=|5|=5
$$

Find the distance:

$$
\operatorname{distance}_{\mathrm{a} \leftrightarrow \mathrm{~b}}=|a-b|
$$

between 10 and 3

$$
=|(10)-(3)|=|7|=7
$$

$$
=|(-10)-(-3)|=|-10+3|=7
$$

between 10 and -3

$$
=|(10)-(-3)|=|10+3|=13
$$

between -10 and 3

$$
=|(-10)-(3)|=|-13|=13
$$

Does the order of the numbers matter?
Why or why not?

What is the distance?
$A C=?$

$$
A C=4
$$

$$
B C=?
$$

$$
B C=3
$$

$$
\mathrm{AB}=?
$$

$\overleftrightarrow{A B}$ is NOT a number line. How can we find $A B$?
Use the Pythagorean Theorem

Theorem is a statement that has been proven to be true.

Theorems are usually written in
"IF hypothesis, THEN conclusion " format.
If the hypothesis is true then we know the conclusion is true.
We exchange the hypothesis and conclusion to get a converse.

Theorem:
Converse of the Theorem:

IF (it) barks, THEN (it is is a) dog dog, THEN (it) barks

The Pythagorean Theorem:

IF the triangle is a right triangle,
THEN the lengths of the sides are related by: $a^{2}+b^{2}=c^{2}$
The converse of this theorem is also the true (but this doesn't work for all theorems).

IF the lengths of the sides of a triangle are related by $a^{2}+b^{2}=c^{2}$
THEN the triangle is a right triangle

$$
\begin{array}{cc}
a^{2}+b^{2}=c^{2} & \sqrt{(3)^{2}+(4)^{2}}=c \\
\sqrt{a^{2}+b^{2}}=c & \sqrt{9+16}=c
\end{array}
$$

$$
\sqrt{9+16}=c \quad 5=c
$$

distance $_{\mathrm{B} \leftrightarrow \mathrm{C}}=|B-C|$ distance $_{\mathrm{B} \leftrightarrow \mathrm{C}}=\left|x_{b}-x_{c}\right|$ distance ${ }_{B \leftrightarrow C}=|3-0|$

$$
B C=3
$$

distance $_{\mathrm{A} \leftrightarrow \mathrm{C}}=|A-C|$ distance $_{\mathrm{A} \leftrightarrow \mathrm{C}}=\left|y_{a}-y_{b}\right|$
distance $_{\mathrm{A} \leftrightarrow \mathrm{C}}=|0-4|$

$$
a^{2}+b^{2}=c^{2}
$$

$$
A C=4
$$

$$
c=\sqrt{a^{2}+b^{2}}
$$

$$
\text { dist }=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}
$$

The distance formula is just the Pythagorean Theorem

$A C=?$
$\mathrm{AC}=6$
$\mathrm{BC}=$?
$B C=2$
$A B=$?
$A B=\sqrt{(6)^{2}+(2)^{2}}$
$A B=\sqrt{40}$
$A B=2 \sqrt{10}$
$a^{2}+b^{2}=c^{2}$

$$
c=?
$$

$$
\begin{aligned}
& ()^{2}+()^{2}=()^{2} \\
& (\sqrt{3})^{2}+(5)^{2}=c^{2} \\
& 3+25=c^{2} \\
& 28=c^{2} \\
& c=\sqrt{3} \\
& c=\sqrt{4} \sqrt{7} \\
& c=2 \sqrt{7}
\end{aligned}
$$

$$
a=5
$$

$a^{2}+b^{2}=c^{2}$

$$
c=5 \sqrt{3}
$$

$$
()^{2}+()^{2}=()^{2}
$$

$(3 \sqrt{2})^{2}+b^{2}=(5 \sqrt{3})^{2}$
$b=$?
Power of a Product Property
$(3)^{2} *(\sqrt{2})^{2}+b^{2}=(5)^{2} *(\sqrt{3})^{2}$
$18+b^{2}=75$
$b=\sqrt{57}$

