Math-2A Lesson 8-2 Distance And The Pythagorean Theorem

## <u>Distance</u>

How do we represent the Length of line segment AB ? AB

We measure the Length of a line segment with a ruler.

Can a distance be negative?

<u>distance formula</u> distance<sub> $a \leftrightarrow b$ </sub> = |a - b|

The distance between -2 and 3 on the number line

distance<sub>-2
$$\leftrightarrow$$
3</sub> =  $|a - b| = |(-2) - (3)| = |-5| = 5$   
=  $|(3) - (-2)| = |5| = 5$ 

Does the order of the numbers matter?

Why or why not?



AB is NOT a number line. How can we find AB?

**Use the Pythagorean Theorem** 

**<u>Theorem</u>** is a statement that has been proven to be true.

## **Theorems** are usually written in "IF <u>hypothesis</u>, THEN <u>conclusion</u>" format.

If the <u>hypothesis</u> is true then we know the <u>conclusion</u> is true. We exchange the <u>hypothesis</u> and <u>conclusion</u> to get a <u>converse</u>.



## The Pythagorean Theorem:

**IF** the triangle is a right triangle,

<u>THEN</u> the lengths of the sides are related by:  $a^2 + b^2 = c^2$ 

The <u>converse</u> of this theorem is also the true (but this doesn't work for all theorems).

**IF** the lengths of the sides of a triangle are related by  $a^2 + b^2 = c^2$ 

**THEN** the triangle is a right triangle







$$c = \sqrt{a^2 + b^2}$$

$$dist = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

The <u>distance formula</u> is just the <u>Pythagorean Theorem</u>





- BC = 2
- AB = ?

 $AB = \sqrt{(6)^2 + (2)^2}$  $AB = \sqrt{40}$  $AB = 2\sqrt{10}$ 

 $a^2 + b^2 = c^2$ c = ?a = 5 $()^{2} + ()^{2} = ()^{2}$  $(\sqrt{3})^2 + (5)^2 = c^2$  $b = \sqrt{3}$  $3+25=c^{2}$  $28 = c^2$  $c = \sqrt{28}$  $c = \sqrt{4}\sqrt{7}$ 

 $c = 2\sqrt{7}$ 



$$()^{2} + ()^{2} = ()^{2}$$
  
 $(3\sqrt{2})^{2} + b^{2} = (5\sqrt{3})^{2}$ 



12

Power of a Product Property  $(3)^{2} * (\sqrt{2})^{2} + b^{2} = (5)^{2} * (\sqrt{3})^{2}$   $18 + b^{2} = 75$   $b = \sqrt{57}$