Math-2A

Lesson 7-8

Functions: Linear, Square, Square root, absolute value, piece-wise defined

Is it a function?

Relation but NOT a function since input value '4' has 2 outputs.

No: input value ' 2 ' has more than one output

There are at least 6 ways to show a relation between input and output values.

Ordered Pairs: $\quad(2,4),(3,2),(-4,3)$

Data table: \quad| x | 2 | 3 | -4 |
| :---: | :---: | :---: | :---: |
| y | 4 | 2 | 3 |

Equation: $y=2 x+1 \quad$ Function notation: $f(2)=4$

Graph:

Are all of these representations the same?

Identify the Domain

> 1. (2, 4), (3, 5), (-4, 2)

$$
\text { 4. } 2,3,-4,-5
$$

We are performing operations on the input value ' x ' to get the output value ' y '.

In the equation, " x " is just place holder for the values that we "plug in" (substitute) into the equation in place of " x ".

$$
y=2 x-1
$$

We replace ' x ' (the place-holder) with a parentheses. Then we substitute into the parentheses the input value then simplify.

$$
y=2(\quad)-1
$$

x	0	1	2
y	-1	1	3

$$
\begin{array}{ccc}
y=2(0)-1 & y=2(1)-1 & y=2(2)-1 \\
y=-1 & y=1 & y=3
\end{array}
$$

Graph the points, draw the line.

Equation \rightarrow table

Using the equation form of the function, fill in the missing values in the table to convert the equation into a table of values.

$$
y=3 x+4
$$

x	0	1	2
y	4	7	10

Table \rightarrow Equation

$$
y=4 x-2
$$

x	0	1	2
y	-2	2	6

Fill in the table then graph $x-y$ pairs from the table.

$$
y=3 x+1
$$

x	0	1	2
y	1	4	7

y-intercept: the x - y pair where a graph crosses the y-axis.

$y=4 x-3$| x | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| y | -3 | 1 | 5 |

Solution of a two-variable equation: all $x-y$ pairs that make the equation true.

Delta a Greek letter (that looks like a triangle) used in engineering and math to denote "change."
Δx Means the change in ' x '
Δy Means the change in ' y '

The coefficient of ' x ' in the equation equals the change in ' y ' of the table values divided by the change in ' x ' of the table values.

$$
3=\frac{6}{2}=\frac{\Delta y}{\Delta x}
$$

Graph \rightarrow Equation

$$
y=m x+b
$$

What is the equation of the line?

Hamburgers cost $\$ 5$ and drinks cost $\$ 2$.
If you can spend a total of $\$ 50$, fill in the total number of hamburgers and drinks that you can buy.

Write an equation for this table.

burgers	drinks
0	25
2	20
4	
6	
8	
10	

$$
D=\frac{-5}{2} H+25
$$

$$
\begin{aligned}
& \text { Drinks }=\frac{50}{2} \\
& \text { \$ available for drinks }=\$ 50-2(\$ 5) \\
&=\$ 40 \\
& \text { Drinks }=\frac{40}{2}
\end{aligned}
$$

Absolute Value Function

$$
f(x)=|x|
$$

Build a table of values for each equation for domain elements: $-2,-1,0,1,2$.

$f(x)=|x|$
$g(x)=-|x|$

$x-$	y
-2	-2
-1	-1
0	0
1	-1
2	-2

Multiplying the parent function by -1 reflects it across the x-axis.
What is the vertex?

$f(x)=|x| \quad g(x)=|x|+2$

x	y
-2	4
-1	3
0	2
1	3
2	4

Adding 2 to the parent function causes the graph to translate up 2
What is the vertex?

$$
f(x)=|x| \quad g(x)=|x-1|
$$

Replacing ' x ' in the parent function with ' x 1' causes the graph to translate right '1'

What is the vertex?

$$
y=x^{2} \quad y=3 x^{2}
$$

Multiplying the parent function by 3 , makes it look "steeper"

We say the function has been reflected across the x-axis.

$$
y=x^{2}
$$

x	$f(x)$
-2	4
-1	1
0	0
1	1
2	4

Multiplying the parent function by -1 actually changes the sign of every y-value of the parent function.

$y=-x^{2}$

x	$f(x)$
-2	-4
-1	-1
0	0
1	-1
2	-4

Fill in the $2^{\text {nd }}$ table.

$$
f(x)=x^{2}
$$

x	$f(x)$
-2	4
-1	1
0	0
1	1
2	4

x	$g(x)$
-2	9
-1	4
0	1
1	0
2	1
3	4

Replacing ' x ' in the parent function with ' $x-1$ ' causes the graph to translate right ' 1 '

Interpret the transformation then graph the function
$\mathrm{k}(\mathrm{x})=(x+2)^{2}-3$

What is the equation that has been graphed?

Square Root Function $\quad f(x)=\sqrt{x}$

Build a table of values for each equation for domain elements: $9,4,1,0,-1$

x	y	$y=\sqrt{x}$
9	3	$y=\sqrt{9}=3$
4	2	$y=\sqrt{4}=2$
1	1	$y=\sqrt{1}=1$
0	0	$y=\sqrt{0}=0$
-1	??	$y=\sqrt{-1}=i$

This is the first function, so far, that does NOT have all real numbers as the domain.

Square Root Function $\quad f(x)=\sqrt{x}$

What is the equation of the graph?

$$
y=(-1) a \sqrt{x-h}+k
$$

Endpoint: right 1, down 2

$$
y=\sqrt{x-1}-2
$$

Has it been vertically stretched?

What is the domain of the graph?

$$
x=[-1, \infty)
$$

What is the equation of the graph?

$$
k(x)=x^{2}+1
$$

Write the equation of the graph above in set-builder notation.

$$
y=x^{2}+1, \text { for } x=[-1, \infty)
$$

What is the equation of the graph?

$$
f(x)=-2 x+3, \text { for } x=(-\infty, 2)
$$

What is the equation of the graph?

$$
g(x)=(x-2)^{2}, \text { for } x=[2, \infty)
$$

