Math-2A Lesson 6-7
 Solving Quadratic Inequalities

Quadratic Equation Review
 $$
y=x^{2}-x-12
$$

What does the "solution" mean?
"All (x, y) pairs that make the equation true."
What does the graph of the "solution" look like?
"A U-shaped curve called a parabola."
$y=x^{2}-x-12 \quad$ What are the zeroes of the equation?
$0=x^{2}-x-12 \quad$ Set $\mathrm{y}=0$
Convert the standard form quadratic into intercept form.
$0=(x-4)(x+3)$
Use the Zero Product Property to find the zeroes

$$
x=4,-3
$$

Find the zeroes of the equation.

$$
\begin{array}{cl}
y=x^{2}-6 x+8 & \text { Set } y=0 \\
0=x^{2}-6 x+8 & \text { Convert into intercept form. } \\
0=(x-4)(x-2) & \text { Use the Zero Product Property } \\
x=4,2 & \text { to find the zeroes }
\end{array}
$$

$$
y=2 x^{2}+10 x-28 \quad \text { Set } y=0
$$

$$
0=2 x^{2}+10 x-28 \quad \text { Convert into intercept form. }
$$

$$
0=2\left(x^{2}+5 x-14\right)
$$

$$
0=2(x+7)(x-2)
$$

Use the Zero Product Property to find the zeroes

$$
x=-7,2
$$

Inequality Review

Simple Inequality:

$$
x-1>3
$$

$+1+1$ Addition Property of Inequality
$x>4$
$x=4 \quad$ The equation gives the boundary number
Is the boundary number solid or circled?

Pick a number and check to see if it is a solution. Let's pick ' 5 ' $(5)>4$ ' 5 ' is a solution, shade the ' 5 ' and all other numbers on that side of the boundary number.

> What is this called?
> $x \leq 3 \quad$ or $\quad x>5$

Compound inequality: 2 inequalities joined together by the either "and" or "or".

What does the graph of the inequality look like?

Notice that the boundary numbers separate the numbers that ARE solutions of the inequality from the numbers that are NOT solutions

$0>x^{2}-3 x-10 \quad 0=x^{2}-3 x-10$

Find the boundary numbers \rightarrow Solve the equation:

$$
0=(x+2)(x-5) \quad x=-2,5
$$

Are the boundary numbers solid or circled?

The numbers -2 and 5 divide the solution from the "non-solution."
The solution is one of the two graphs below.

$$
0>x^{2}-3 x-10 \quad 0=x^{2}-3 x-10
$$

The solution is one of the two graphs below.

Pick and easy number to test.
If zero is NOT a solution, the top graph is the solution. If zero IS a solution, the bottom graph is the solution.
$0>(0)^{2}-(0)-10 \quad 0>-10$
Zero IS a solution, the bottom graph is the solution.
Solve
$0<x^{2}-4 x-5$
$0=x^{2}-4 x-5$

Find the boundary numbers \rightarrow Solve the equation:

$$
0=\underset{-1}{(x-5)(x+1)} \quad x=5,-11
$$

The numbers -1 and 5 divide the solution from the "non-solution."

$0<(0)^{2}-4(0)-5$
$0<-5$
False \rightarrow shade outside

Solve $\quad x^{2}-9>0 \quad$ Solve the equation: $\quad x^{2}-9=0$

$$
x=-3,3 \quad(x-3)(x+3)=0
$$

The numbers -3 and 3 divide the solution from the "non-solution."

Test "0"
$(0)^{2}-9>0$

$$
-9>0 \quad(-\infty,-3) \cup(3, \infty)
$$

False \rightarrow shade outside

Another way to look at it:

What does $f(x)$ mean? "math being done to ' x '"

$$
f(x)=x^{2}-x-12
$$

Quadratic Inequality

"math being done to 'x'"

$$
f(x)<0
$$

"Where is the function negative?"

Quadratic Inequality $\underbrace{x^{2}-x-12}<0$

"Where is the function negative?" $f(x)<0$

\rightarrow Graph the function using the following steps.

1. Replace "<" or ">" or " \geq " or " \leq " with the equal sign "=".

$$
x^{2}-x-12=0
$$

2. Replace "0" with "y" $\quad x^{2}-x-12=y$
3. Find the x -intercepts (by factoring).

$$
y=(x-4)(x+3)
$$

4. Graph the function.
5. Where is the function negative?
$f(x)<0$ on $x=(-3,4)$
$-3<x<4$
