Math-2A Lesson 6-6

Two Variable Linear Inequalities

Graph the solution to the compound inequality:

$$x \le 6$$
 or $x > 8$

How would you <u>define</u> (in words) what a solution to a <u>single variable compound inequality</u> means?

The values of 'x' that make the inequality true.

Draw the graph of the following:

What is the <u>solution</u> to a twovariable equation: y = x + 3 ?

The <u>x-y pairs that make the equation true</u>. When graphed the <u>solution</u> to the equation is <u>ALL of the points</u> on the graph of the equation.

$$y \ge x + 3$$

What is the <u>solution</u> to a two-variable inequality $y \ge x + 3$?

The <u>x-y pairs that make the inequality true</u>. When graphed the <u>solution</u> to the equation is <u>ALL of the points</u> on the graph of the inequality.

 $y \ge x + 3$ Is (0, 0) a solution? $0 \ge 0 + 3$

Make "<u>open circles</u>" on points that are NOT solutions.

Fill in the table:

×	У	solution ?
0	0	no
0	1	no
0	2	no
0	3	yes
0	4	yes

Make "<u>closed circles</u>" on points that ARE solutions.

 $y \ge x + 3$

X	У	solution ?
-1	0	no
-1	1	no
-1	2	yes
-1	3	yes
-2	0	no
-2	1	yes
-2	2	yes
-3	0	yes
-3	1	yes
-3	2	yes

What will the graph will look like?

Every point <u>above the line</u> will be a solution.

Every point <u>below</u> the line will NOT.

The line: y = x + 3Divides the x-y plane into two halves.

The solution to the inequality is <u>all of</u> <u>the points in one of the "half planes".</u>

Do the points <u>on the boundary line</u> make the inequality true?

y > x + 3

Now it is just ">" not " \geq " Test two points one the line: (0, 3) \checkmark (-1, 2)

Do the points <u>on the line</u> make the inequality true?

no

How do we show that the points on the line are NOT solutions of the inequality?

DO NOT shade those points.

An "unshaded" line is a dotted line.

Let's write a procedure on how to graph 2-variable inequalities.

$$y > -2x + 3$$
. Graph the line.

$$y = -2x + 3$$

2. If the inequality is ">" (not "≥"), the line will be dotted (not shaded).

3. If it is "≥" the line will be solid (shaded).

$$y > -2x + 3$$

4. Test a point on <u>one side of</u> <u>the boundary line.</u> If that point is a solution, shade that side of the line, (otherwise shade the other side).

$$(0, 0)$$

 $0 > -2(0) + 3$ no

Shade other side of line from (0, 0)

Graph the following inequality.

$$2x - 3y > 6$$

Why does ">" end up being shaded below the line?

Non-linear 2 Variable inequality

$$y < (x+2)^3 + 2$$

Is the curve solid or dotted?

Is the solution the region above or below the curve?

