Math-2A

 Lesson 6-4

 Lesson 6-4}

Piece-wise Defined Function

Set-Builder Notation: a way of writing an equation that also defines the input values to use.
$\underset{\text { outputs }}{f(x)}=\{$ rule, for $\mathrm{x}=($ Inputs $)\}$
"French Brackets" \rightarrow set

$$
f(x)=x^{2}+1
$$

Domain of $\mathrm{f}(\mathrm{x}):\{\mathrm{x}=$??? $\}$
Domain : $\{\mathrm{x}=(-\infty, \infty)\}$

$$
\underline{f(x)}=\left\{\frac{x^{2}+1, \text { for } x=(-\infty, \infty)}{\text { outputs }} \frac{\text { rule }}{\text { Inputs }}\right.
$$

Domain of all square functions is "all real numbers"

$$
k(x)=\sqrt{x}
$$

Endpoint of $k(x)=$?
$(0,0)$
Domain of $\mathrm{k}(\mathrm{x})=? \quad x=[0, \infty)$
Graph $\mathrm{k}(\mathrm{x})$

Write $\mathrm{k}(\mathrm{x})$ in "set-builder" notation.

$$
k(x)=\{\sqrt{x}, \mathrm{x}=[0, \infty)\}
$$

Domain of all square root functions are NOT "all real numbers" (redundant BUT more useful to write it in "set-builder" notation).

$$
j(x)=\sqrt{x-2}
$$

Endpoint of $\mathrm{j}(\mathrm{x})=$? $(2,0)$
Domain of $\mathrm{j}(\mathrm{x})=? x=[2, \infty)$
Graph $\mathrm{j}(\mathrm{x})$

Write $\mathrm{j}(\mathrm{x})$ in "set-builder" notation.
$j(x)=\{\sqrt{x-2}, \mathrm{x}=[2, \infty)\}$

What is the domain of the graph?

$$
x=[-1, \infty)
$$

What is the equation of the graph?

$$
k(x)=x^{2}+1
$$

Write the equation of the graph above in set-builder notation.

$$
k(x)=\left\{x^{2}+1, \mathrm{x}=[-1, \infty)\right\}
$$

$p(x)$

Define $p(x)$ using "set-builder" notation.

$$
p(x)=\left\{x^{2}+1, \text { for } \mathrm{x}=(-\infty, 2]\right\}
$$

Define $\mathrm{m}(\mathrm{x})$ using "set-builder" notation.

$$
m(x)=\left\{x^{2}+1, \text { for } \mathrm{x}=(-\infty,-1.5] \cup[1, \infty)\right\}
$$

Graph j(x)

$$
j(x)=\left\{x^{2}+1, x=(-\infty,-1] \bigcup[0, \infty)\right\}
$$

$f(x)=\{-2 x+3, x=(-\infty, 2)\}$

What is the equation of the graph?

$$
g(x)=\left\{(x-2)^{2}, x=[2, \infty)\right\}
$$

What is the equation of the graph?

How would you define the following graph?

We call this a "piece-wise" defined

Graph them both:

$$
h(x)=\left\{\begin{array}{l}
x+3, x=(0, \infty) \\
-x^{2}-1, x=(-\infty, 0]
\end{array}\right.
$$

Graph this piecewise-defined function:

$$
h(x)=\left\{\begin{array}{l}
x^{2}, x=(-\infty, 0) \\
|x|, x=[0, \infty)
\end{array}\right\}
$$

$$
g(x)=\left\{\begin{array}{l}
1+\sqrt{x}, x=(-\infty, 0) \\
x-3, x=[0, \infty)
\end{array}\right\}
$$

$$
k(x)=\left\{\begin{array}{l}
x^{3}, x=(-\infty, 0) \\
x+1, x=[0, \infty)
\end{array}\right\}
$$

