## Math-2A <br> Lesson 6-3 <br> Analyzing the Graphs of Functions (Where is it increasing or decreasing?)

## United Nations Peacekeeping Financial Contributions by the P5

 (nominal \$USD)January 1994 - March 2016


## Average Rate of Change

 change" between $\mathrm{x}=2$ and 4 ?

Means "what is the slope of the graph between the two points $\left(2, y_{1}\right)$ and $\left(4, \mathrm{y}_{2}\right)$ ?


The Function is Increasing
$\rightarrow$ if you draw a tangent line at a point on the graph and it has a positive slope, the function is increasing at that point.
The slope of a tangent line at any point on the graph for the interval $x=(2, \infty)$ is positive.
What about when $x=2$ ?
The slope of a tangent line at $x=2$ is zero (not increasing at that point).
We say: "the function is increasing on the $(x)$ interval: $(2, \infty)$

$$
f(x) \uparrow \text { on } x=(2, \infty)
$$



## The function is decreasing

$\rightarrow$ if you draw a tangent line at a point on the graph, and it has a negative slope, the function is decreasing at that point.

The slope of a tangent line at any point on the graph for the interval $x=(-\infty, 2)$ is negative.

What about when $\mathrm{x}=2$ ?
The slope of a tangent line at $x=2$ is zero (not decreasing at that point).

We say the function is decreasing on the interval $x=(-\infty, 2)$

$$
f(x) \downarrow \text { on } x=(-\infty, 2)
$$



## "Extrema"

Extrema: a point on a graph whose tangent line has a slope of zero.

Does the graph have any extrema?
Yes. The slope of a tangent line at $(2,0)$ is zero (slope changes from negative to positive at $x=2$ ).
You can think of extrema an points on the graph that are "peaks" or "valleys".

Extrema: the $y$-value of points that are extrema are either (1) the maximum or minimum $y$-value on the graph, OR (2) compared the points adjacent to them, are either the maximum or minimum $y$-value.

Extrema: a point on a graph whose tangent line has a zero slope.


We classify extrema by their $y$-values.

Absolute minimum (maximum): an extrema whose $y$-value is the smallest (largest) y-value for the entire function.
relative maximum (minimum): an extrema whose $y$-value is the greater than (less than) the $y$-value of points near it.


In" "inequality notation" we say the range is: $y \geq 0$
In "interval notation" we say the range is: $y=[0, \infty)$
$y=|x+3|-2 \quad 1$. Where is the function increasing?

$$
f(x) \uparrow \text { on } x=(-3, \infty)
$$

2. Where is the function decreasing?

$$
f(x) \downarrow \text { on } x=(-\infty,-3)
$$

3. Where is the function positive?

$$
f(x)>0 \text { for } x=(-\infty,-3] \cup[6, \infty)
$$

4. What are the "extrema"?

Absolute Minimum at (-3, -4)
5. What are the range?

$$
\text { Range of } f(x): y=[-2, \infty)
$$

