Math-2A
 Lesson 6-2
 Analyzing the Graphs of Functions
 (Where the function is positive and negative)

Three Ways to describe a shaded region of a number line.

1. Graph:

2. Inequality: $x>3$
3. Interval Notation: (3, ∞)

Interval notation vs. inequality notation
$(1,2) \quad$ Looks like the ordered pair: $x=1, y=2$
From the context where it is used you will be able to tell if it is an ordered pair or an interval of numbers.
$(1,2)$ "all of the \#'s between (but not including) 1 and 2"
$(1,2)$ means the same thing as: $1<x<2$
$[1,2]$ "all of the \#'s between (including) 1 and 2"
[1, 2]: means the same thing as: $1 \leq x \leq 2$

Inteval notation vs. inequality notation
Convert to Inequality notation:
Graph
$[1,2) \quad 1 \leq x<2$

$(1,2]$
$(\infty, 2)$
$(\infty, 2) \cup(7, \infty)$
$(\infty, 2] \cup(5, \infty)$

What does the following inequality mean?
$x>11$ "all the numbers that are greater than 11 "
Number line equivalent: (shade all \#'s that are solutions)

Interval notation equivalent: $\quad x=(11, \infty)$
$x \leq 5 \quad$ "all the number that are less than or equal to 5 "
Number line equivalent:

Interval notation equivalent: $\quad x=(-\infty, 5]$

A number line can be shaded more than one region.

$$
x>11 \text { or } x<9
$$

Number line equivalent:

Interval notation equivalent: $\quad x=(-\infty, 9] U(11, \infty)$

Number line:

Interval notation equivalent:

Where is the function positive?
means: "What x-values have corresponding y-values that are positive"?

Or, "The graph is above the x -axis for what x -values"?

To see what these x-values are, shade the portion of the x-axis where the graph is above the x-axis.

We say: $\quad f(x)>0$ for $x=(-\infty, 1] \cup[3, \infty)$

What is the "domain" of the graph?
Means "what values of " x " are found in the graph?"

Which function is the only one which does NOT have "all real numbers" as the domain?

$$
y=\sqrt{x}
$$

For non-vertical lines, the square function, and the absolute value function, we say the domain is "all real numbers."

In" "inequality notation" we say the range is: $y \geq 0$
In "interval notation" we say the range is: $y=[0, \infty)$

1. Where is the function positive?

$$
f(x)>0 \text { for } x=(1, \infty)
$$

2. Where is the function negative?
$f(x)<0$ for $x=(-\infty, 1)$
3. Where is the function positive?
$f(x)>0$ for $x=[-2,2)$
4. Where is the function negative?
$f(x)<0$ for $x=(2, \infty)$
