Math-2A Lesson 6-1

Cube, and Cubed Root Functions.

Square Root Function $f(x)=\sqrt{x}$

x	y
9	3
4	2
1	1
0	0

Square Function (quadratic function)

$$
g(x)=x^{2}
$$

x	y
-2	3
-1	2
0	1
1	0
2	4

What is a power?

Power: An expression formed by repeated Multiplication of the same factor.

The base is used as a factor the exponent number of times.

$$
3 * x * x * x * x
$$

The Cube Function

$$
f(x)=x^{3}
$$

Build a table of values for each equation for domain elements: $-2,-1,0,1,2$.

$$
\begin{aligned}
& \begin{array}{|c|c|}
\hline x & y \\
\hline-2 \\
\hline
\end{array} \\
& \begin{array}{l|l|l}
\hline-2 & -8 & y=(-2)^{3}
\end{array} \\
& \begin{array}{l|l|l}
\hline-1 & -1 & y=(-1)^{3}
\end{array} \\
& \begin{array}{l|l|l}
0 & 0 & y=(0)^{3}
\end{array}
\end{aligned}
$$

Cubing Function

$$
f(x)=x^{3}
$$

What is the domain of the function?
All real numbers.

What is the range of the function?
All real numbers.

$$
f(x)=x^{3}
$$

Inflection Point: the point where the shape of the graph changes from "concave down" (curving downward) to "concave up" (curving upward) or vice versa. Inflection point: $(0,0)$

Not vertically stretched:
"right 1, up 1"
From the "inflection point"

Left/right and up/down transformations move the inflection point (and the whole graph)

Reflection across the x-axis and vertical stretching affects the shape of the graph.

Describe the transformations of the parent function given by:
$f(x)=x^{3}$

$$
g(x)=-x^{3}
$$

$$
k(x)=(x-2)^{3}+4
$$

right 2, yp 4.

Describe the transformations of the parent function given by:

$$
f(x)=x^{3} \quad g(x)=2 x^{3} \quad k(x)=-3(x+4)^{3}-2
$$

$$
V S F=2 . \quad \text { left 4, down 2, Reflect } x \text {-axis, VSF=3. }
$$

Cubed Root (or 3 ${ }^{\text {rd }}$ root)

Cubed Root function: $\quad f(x)=\sqrt[3]{x}$

Where is the inflection point? $\quad f(x)=\sqrt[3]{x}$

Not vertically stretched:
"right 1, up 1"
From the inflection point

Cubed Root Function $f(x)=\sqrt[3]{x}$

So you can "take" the 3rd root of a negative number.

What is the domain of the function? All real numbers.
What is the range of the function? All real numbers.

What is the transformation of the parent function?

$$
f(x)=\sqrt[3]{x} \quad f(x)=-\sqrt[3]{x} \quad f(x)=-2+\sqrt[3]{x+4}
$$

Reflected
across x-axis.

Left 4, down 2

Graph the following equation (without a calculator). $f(x)=-2-\sqrt[3]{x+3}$

$f(x)=\sqrt{x}$

$f(x)=x^{3}$

$f(x)=\sqrt[3]{x}$

$$
\begin{aligned}
& y=(-1) a \sqrt{x-h}+k \\
& y=(-1) a(x-h)^{3}+k \\
& y=(-1) a \sqrt[3]{x-h}+k
\end{aligned}
$$

What is the equation of the graph?

Whatvis the equation of the graph?

$$
f(x)=-2-3 \sqrt[3]{x-4}
$$

Down 3

$$
\begin{aligned}
& \text { What is the equation of the graph? } \\
& \text { and } \\
& \text { vertical stretch: 2 } \\
& \text { No reflection (x-axis) }
\end{aligned}
$$

What is the equation of the graph?

