Math-2
 Lesson 5-6

Finding the Zeroes of Quadratic Equations by Taking Square roots.

$$
y=a(x+h)^{2}+k
$$

No x-intercepts

$$
y=x^{2}+1
$$

Find the "zeroes" of $x= \pm i$ the equation.

$$
y=x^{2}-1
$$

$$
0=x^{2}-1
$$

$$
1=x^{2}
$$

$$
\sqrt{1}=\sqrt{x^{2}}
$$

$$
x= \pm 1
$$

two x-intercepts

$$
0=x^{2}+1
$$

$$
-1=x^{2}
$$

$$
\sqrt{-1}=\sqrt{x^{2}}
$$

Zeroes of Quadratic Equations

Find the zeroes of the quadratic equation.
Set $y=0$ then "Isolate the square, undo the square"

$$
\begin{array}{lcc}
y=x^{2}-12 & 0=x^{2}-12 & 12=x^{2} \\
& & \sqrt{12}=\sqrt{x^{2}} \\
y=3 x^{2}-18 & & x= \pm 2 \sqrt{3} \\
0=3 x^{2}-18 & 6=x^{2} & \\
18=3 x^{2} & \sqrt{6}=\sqrt{x^{2}} & \\
& x= \pm \sqrt{6} &
\end{array}
$$

$$
y=(x-2)^{2}-9
$$

1. Which form of the quadratic is this? Vertex Form
2. What are the transformations of the parent function? Right 2, down 9
3. What is the vertex?
$(2,-9)$
4. Draw a graph of the function.
5. Are the zeroes real or imaginary?

$$
x=5,-1
$$

6. What are the zeroes of the equation?

The graph crosses the x -axis
\rightarrow it has real number zeroes.

$$
y=(x+3)^{2}-8
$$

1. Which form of the quadratic is this? Vertex Form
2. What are the transformations of the parent function?

Left 3, down 8
3. What is the vertex? $(-3,-8)$
4. Draw a graph of the function.
5. Are the zeroes real or imaginary?

The graph crosses the x-axis

\rightarrow it has real number zeroes.

If you can't factor the Standard Form version of the Vertex
Form equation that must be a way to find the zeroes!
Vertex form \rightarrow take square roots.
$y=a(x-h)^{2}+k \quad y=(x+3)^{2}-8$
\longrightarrow Let $\mathrm{y}=0 \quad 0=(x+3)^{2}-8$
Isolate the squared term $8=(x+3)^{2}$ "take square roots" $\sqrt{8}=\sqrt{(x+3)^{2}}$ $\pm \sqrt{8}=x+3 \quad$ Simplify the radical $\pm \sqrt{2 * 2 * 2}=x+3$
$\pm 2 \sqrt{2}=x+3$ Solve for ' x '
$x=(-3)+2 \sqrt{2}$
x-coord of vertex

This method words without having to covert to standard form then to intercept form (by factoring) in order to find the zeroes.
Vertex form \rightarrow extract a square root.

Isolate the squared term

$$
9=(x-1)^{2}
$$

$$
\sqrt{9}=\sqrt{(x-1)^{2}} \quad \pm 3=x-1
$$

Solve for ' x ' $\quad 1 \pm 3=x$ simplify $x=4,-2$
Or, covert to standard form, then intercept form.

$$
\begin{array}{lc}
y=(x-1)^{2}-9 & y=(x-4)(x+2) \\
y=x^{2}-2 x+1-9 & 0=(x-4)(x+2) \\
y=x^{2}-2 x-8 & x=4,-2
\end{array}
$$

$$
\begin{aligned}
& y=a(x-h)^{2}+k \\
& y=(x-1)^{2}-9 \\
& \text { Let } \mathrm{y}=0 \quad 0=(x-1)^{2}-9
\end{aligned}
$$

$y=(x-2)^{2}-4 \quad$ Let $y=0$

$$
0=(x-2)^{2}-4
$$

Isolate the squared term $4=(x-2)^{2}$
"Extract a square root" $\pm \sqrt{4}=\sqrt{(x-2)^{2}}$

$$
\pm 2=x-2
$$

Solve for ' x ' $2 \pm 2=x$

$$
\begin{aligned}
& x=2+2 \quad \text { simplify } \quad x=4,0 \\
& x=2-2
\end{aligned}
$$

Or, covert to standard form, then intercept form.

$$
\begin{array}{lc}
y=(x-2)^{2}-4 & y=x(x-4) \\
y=x^{2}-4 x+4-4 & 0=x(x-4) \\
y=x^{2}-4 x & x=0,4
\end{array}
$$

But the convert to standard form then intercept form doesn't always work (if the standard form can't be factored).

$$
\left.\begin{array}{ll}
y=2(x+7)^{2}-10 & y=2\left(x^{2}+14 x+49\right)-10 \\
y=2 x^{2}+28 x+86 & y=2 x^{2}+28 x+96-10
\end{array}\right] \begin{array}{ll}
y=x^{2}+14 x+43 & \begin{array}{l}
43 \text { is a prime number, it only has } \\
\text { factors of } 1 \text { and } 43
\end{array} \\
\begin{array}{ll}
y=2(x+7)^{2}-10 & \text { Let } y=0
\end{array} \\
\begin{array}{ll}
0=2(x+7)^{2}-10 & \text { Isolate the Square term } \\
10=2(x+7)^{2} & \text { Divide by } 2 \text { (both sides) } \\
5=(x+7)^{2} & \text { "take square roots" } \\
\pm \sqrt{5}=\sqrt{(x+7)^{2}} & \\
\pm \sqrt{5}=x+7 \quad \text { subtract } 7 \text { from both sides } \\
-7 \pm \sqrt{5}=x \quad & x=-7+\sqrt{5} \quad x=-7-\sqrt{5}
\end{array}
\end{array}
$$

Find the "zeroes" by "Extracting a square root"

$$
\begin{aligned}
& y=(x-1)^{2} \\
& y=(x-2)^{2}-5 \\
& y=3(x+4)^{2}-12 \\
& y=2(x-7)^{2}-18
\end{aligned}
$$

