Math-2A

Lesson 4-4

Equations of Lines

How can an equation "make" a line?

$$
y=x+1
$$

Fill in the rest of the table

x	rule	$f(x)$
-4	$-4+1$	-3
-3	$-3+1$	-2
-2	$-2+1$	-1
-1	$-1+1$	0
0	$0+1$	1
1	$1+1$	2
2	$2+1$	3
3	$3+1$	4

Graph the
$x-y$ pairs

$y=x+1 \quad$ So far we've picked on "integer" values for ' x '. We can also pick rational numbers between the integers.

Fill in the rest of the table

x	y
-2.5	-1.5
-1.5	-0.5
-0.5	0.5
0.5	1.5
1.5	2.5
2.5	3.5

Graph the new x-y pairs on the same graph.

$$
y=x+1
$$

So far, we've used integers and \#'s halfway in between.

How many numbers are there between any 2 integers?.
What would happen to our graph if we used every possible value of ' x ' as an input value into the function?

More and more points are plotted.

Slope Intercept Form: An equation of the form $y=m x+b$. Where $m=$ slope and $b=y$ intercept.

Y-intercept: The y-coordinate of a point where the graph intersects the y-axis. The x-coordinate of the y-intercept will always equal zero. ($0, \mathrm{y}$)
x-intercept: The x-coordinate of a point where the graph intersects the x-axis. The y-coordinate of the x-intercept will always equal zero. ($x, 0$)

1. What are the coordinates $[(x, y)$ pair] of the x-intercept?
2. What are the coordinates $[(x, y)$ pair] of the y-intercept?
3. What is the y-coordinate of the x-intercept?
4. What is the x-coordinate of the y-intercept?

Key Point

Standard form of a linear equation: An equation Of the form: $A x+B y=C . \quad$ Example: $3 x+4 y=12$

Graphing Standard form equations.

Graph the lines.

