Math-2A

Lesson 3-4
 Rational Exponents

Radicals CAN be written as Powers

Coefficient \longrightarrow Coefficient
Radicand
\longrightarrow Base
Index \longrightarrow Denominator of the Exponent
The index number is the denominator of the exponent.

Are radicals related to powers?

$$
3^{1 / 2}=\sqrt[2]{3}
$$

$$
\begin{aligned}
& 3 \sqrt[2]{y}=3 y^{1 / 2} \\
& 5 \sqrt[3]{7}=5(7)^{1 / 3}
\end{aligned}
$$

$5^{1 / 3}=\sqrt[3]{5}$
$\sqrt[2]{x}=x^{1 / 2}$
$\sqrt[3]{7}=7^{1 / 3}$
None of these have coefficients!

Use multiplication (by a coefficient) is "repeated addition" to explain why coefficients of radicals become coefficients of powers.

$$
\begin{aligned}
& 3 \sqrt[2]{y}=\sqrt{y}+\sqrt{y}+\sqrt{y} \\
& 3 y^{1 / 2}=y^{1 / 2}+y^{1 / 2}+y^{1 / 2}
\end{aligned}
$$

$$
\sqrt{y}=y^{1 / 2}
$$

Write the following radicals as powers.

$$
\begin{aligned}
& \sqrt[2]{3 m} \rightarrow(3 m)^{1 / 2} \\
& 4 \sqrt[3]{5 y} \rightarrow 4(5 y)^{1 / 3}
\end{aligned}
$$

$3 m \sqrt[4]{6 n} \rightarrow 3 m(6 n)^{1 / 4}$
$\sqrt[5]{x^{3} y^{2}} \rightarrow\left(x^{3} y^{2}\right)^{1 / 5} \rightarrow x^{3 / 5} y^{2 / 5}$
$5 \sqrt[4]{3 m^{2}} \rightarrow 5\left(3 m^{2}\right)^{1 / 3} \rightarrow 5\left(3^{1 / 3}\right) m^{2 / 3}$

Rewrite in "radical form"
$m^{1 / 5} \rightarrow \sqrt[5]{m}$
$3 n m^{1 / 4} \rightarrow 3 n \sqrt[4]{m}$
$2\left(18 n^{2}\right)^{1 / 6} \rightarrow 2 \sqrt[6]{18 n^{2}}$
$5\left(4 x^{2} y^{6}\right)^{1 / 3} \rightarrow 5 \sqrt[6]{4 * x^{2} * y^{6}} \rightarrow 5 y \sqrt[3]{4 x^{2}}$

Multiply Powers Property

$x^{\frac{1}{5}} * x^{\frac{3}{5}} \rightarrow x^{\frac{1}{5}+\frac{3}{5}} \rightarrow x^{\frac{4}{5}}$
What if the exponents are fractions and they have unlike denominators?
$x^{\frac{2}{5}} * x^{\frac{3}{4}}$
Use the Identity Property of Multiplication to obtain common denominators.
$\rightarrow x^{\frac{2}{5} * \frac{4}{4}} * x^{\frac{3}{4} * \frac{5}{5}} \rightarrow x^{\frac{8}{20}} * x^{\frac{15}{20}} \rightarrow x^{\frac{8}{20}+\frac{15}{20}} \rightarrow x^{\frac{23}{20}}$

Exponent of a Power Property Multiply exponents

$$
3 x\left(y^{1 / 5}\right)^{2 / 3} \rightarrow 3 x y^{\frac{1}{5} * \frac{2}{3}} \rightarrow 3 x y^{\frac{2}{15}}
$$

Negative Exponent Property

Grab and drag same-based powers to be next to each other.

$$
\left.\begin{array}{rl}
\frac{x^{2} y^{2 / 3}}{y^{-1 / 2}} \rightarrow x^{2} y^{2 / 3} y^{1 / 2} & \rightarrow x^{2} y^{\frac{2}{3}+\frac{1}{2}}
\end{array} \rightarrow x^{2} y^{\frac{2}{3} * \frac{2}{2}+\frac{1}{2} * \frac{3}{3}}\right) ~\left(x^{2} y^{\frac{4}{6}+\frac{3}{6}} \quad \rightarrow x^{2} y^{\frac{7}{6}} \rightarrow\right.
$$

